All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.image.processing.face.feature.FisherFaceFeature Maven / Gradle / Ivy

Go to download

Implementation of a flexible face-recognition pipeline, including pluggable detectors, aligners, feature extractors and recognisers.

There is a newer version: 1.3.10
Show newest version
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.openimaj.image.processing.face.feature;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.AbstractList;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;

import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.data.dataset.GroupedDataset;
import org.openimaj.data.dataset.ListDataset;
import org.openimaj.feature.DoubleFV;
import org.openimaj.feature.FeatureVectorProvider;
import org.openimaj.image.FImage;
import org.openimaj.image.model.FisherImages;
import org.openimaj.image.processing.face.alignment.FaceAligner;
import org.openimaj.image.processing.face.detection.DetectedFace;
import org.openimaj.io.IOUtils;
import org.openimaj.ml.training.BatchTrainer;
import org.openimaj.util.pair.IndependentPair;

/**
 * A {@link FacialFeature} for FisherFaces.
 * 
 * @author Jonathon Hare ([email protected])
 */
@Reference(
		type = ReferenceType.Article,
		author = { "Belhumeur, Peter N.", "Hespanha, Jo\\~{a}o P.", "Kriegman, David J." },
		title = "Fisherfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection",
		year = "1997",
		journal = "IEEE Trans. Pattern Anal. Mach. Intell.",
		pages = { "711", "", "720" },
		url = "http://dx.doi.org/10.1109/34.598228",
		month = "July",
		number = "7",
		publisher = "IEEE Computer Society",
		volume = "19",
		customData = {
				"issn", "0162-8828",
				"numpages", "10",
				"doi", "10.1109/34.598228",
				"acmid", "261512",
				"address", "Washington, DC, USA",
				"keywords",
				"Appearance-based vision, face recognition, illumination invariance, Fisher's linear discriminant."
		})
public class FisherFaceFeature implements FacialFeature, FeatureVectorProvider {
	/**
	 * A {@link FacialFeatureExtractor} for producing FisherFaces. Unlike most
	 * {@link FacialFeatureExtractor}s, this one either needs to be trained or
	 * provided with a pre-trained {@link FisherImages} object.
	 * 

* A {@link FaceAligner} can be used to produce aligned faces for training * and feature extraction. * * @author Jonathon Hare ([email protected]) * * @param * */ public static class Extractor implements FacialFeatureExtractor, BatchTrainer> { FisherImages fisher = null; FaceAligner aligner = null; /** * Construct with the requested number of components (the number of PCs * to keep) and a face aligner. The principal components must be learned * by calling {@link #train(List)}. * * @param numComponents * the number of principal components to keep. * @param aligner * the face aligner */ public Extractor(int numComponents, FaceAligner aligner) { this(new FisherImages(numComponents), aligner); } /** * Construct with given pre-trained {@link FisherImages} basis and a * face aligner. * * @param basis * the pre-trained basis * @param aligner * the face aligner */ public Extractor(FisherImages basis, FaceAligner aligner) { this.fisher = basis; this.aligner = aligner; } @Override public FisherFaceFeature extractFeature(T face) { final FImage patch = aligner.align(face); final DoubleFV fv = fisher.extractFeature(patch); return new FisherFaceFeature(fv); } @Override public void readBinary(DataInput in) throws IOException { fisher.readBinary(in); final String alignerClass = in.readUTF(); aligner = IOUtils.newInstance(alignerClass); aligner.readBinary(in); } @Override public byte[] binaryHeader() { return this.getClass().getName().getBytes(); } @Override public void writeBinary(DataOutput out) throws IOException { fisher.writeBinary(out); out.writeUTF(aligner.getClass().getName()); aligner.writeBinary(out); } @Override public void train(final List> data) { final List> patches = new AbstractList>() { @Override public IndependentPair get(int index) { return IndependentPair.pair(data.get(index).firstObject(), aligner.align(data.get(index).secondObject())); } @Override public int size() { return data.size(); } }; fisher.train(patches); } /** * Train on a map of data. * * @param data * the data */ public void train(Map> data) { final List> list = new ArrayList>(); for (final Entry> e : data.entrySet()) { for (final T i : e.getValue()) { list.add(IndependentPair.pair(e.getKey(), aligner.align(i))); } } fisher.train(list); } /** * Train on a grouped dataset. * * @param * The group type * @param data * the data */ public void train(GroupedDataset, T> data) { final List> list = new ArrayList>(); for (final KEY e : data.getGroups()) { for (final T i : data.getInstances(e)) { if (i != null) list.add(IndependentPair.pair(e, aligner.align(i))); } } fisher.train(list); } } private DoubleFV fv; protected FisherFaceFeature() { this(null); } /** * Construct the FisherFaceFeature with the given feature vector. * * @param fv * the feature vector */ public FisherFaceFeature(DoubleFV fv) { this.fv = fv; } @Override public void readBinary(DataInput in) throws IOException { fv = new DoubleFV(); fv.readBinary(in); } @Override public byte[] binaryHeader() { return getClass().getName().getBytes(); } @Override public void writeBinary(DataOutput out) throws IOException { fv.writeBinary(out); } @Override public DoubleFV getFeatureVector() { return fv; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy