org.openimaj.image.processing.face.feature.EigenFaceFeature Maven / Gradle / Ivy
Show all versions of faces Show documentation
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.processing.face.feature;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.AbstractList;
import java.util.List;
import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.data.dataset.Dataset;
import org.openimaj.experiment.dataset.util.DatasetAdaptors;
import org.openimaj.feature.DoubleFV;
import org.openimaj.feature.FeatureVectorProvider;
import org.openimaj.image.FImage;
import org.openimaj.image.model.EigenImages;
import org.openimaj.image.processing.face.alignment.FaceAligner;
import org.openimaj.image.processing.face.detection.DetectedFace;
import org.openimaj.io.IOUtils;
import org.openimaj.ml.training.BatchTrainer;
/**
* A {@link FacialFeature} for EigenFaces.
*
* @author Jonathon Hare ([email protected])
*/
@Reference(
type = ReferenceType.Inproceedings,
author = { "Turk, M.A.", "Pentland, A.P." },
title = "Face recognition using eigenfaces",
year = "1991",
booktitle = "Computer Vision and Pattern Recognition, 1991. Proceedings CVPR '91., IEEE Computer Society Conference on",
pages = { "586 ", "591" },
month = "jun",
number = "",
volume = "",
customData = {
"keywords", "eigenfaces;eigenvectors;face images;face recognition system;face space;feature space;human faces;two-dimensional recognition;unsupervised learning;computerised pattern recognition;eigenvalues and eigenfunctions;",
"doi", "10.1109/CVPR.1991.139758"
})
public class EigenFaceFeature implements FacialFeature, FeatureVectorProvider {
/**
* A {@link FacialFeatureExtractor} for producing EigenFaces. Unlike most
* {@link FacialFeatureExtractor}s, this one either needs to be trained or
* provided with a pre-trained {@link EigenImages} object.
*
* A {@link FaceAligner} can be used to produce aligned faces for training
* and feature extraction.
*
* @author Jonathon Hare ([email protected])
*
* @param
*
*/
public static class Extractor
implements
FacialFeatureExtractor,
BatchTrainer
{
EigenImages eigen = null;
FaceAligner aligner = null;
/**
* Construct with the requested number of components (the number of PCs
* to keep) and a face aligner. The principal components must be learned
* by calling {@link #train(List)}.
*
* @param numComponents
* the number of principal components to keep.
* @param aligner
* the face aligner
*/
public Extractor(int numComponents, FaceAligner aligner) {
this(new EigenImages(numComponents), aligner);
}
/**
* Construct with given pre-trained {@link EigenImages} basis and a face
* aligner.
*
* @param basis
* the pre-trained basis
* @param aligner
* the face aligner
*/
public Extractor(EigenImages basis, FaceAligner aligner) {
this.eigen = basis;
this.aligner = aligner;
}
@Override
public EigenFaceFeature extractFeature(T face) {
final FImage patch = aligner.align(face);
final DoubleFV fv = eigen.extractFeature(patch);
return new EigenFaceFeature(fv);
}
@Override
public void readBinary(DataInput in) throws IOException {
eigen.readBinary(in);
final String alignerClass = in.readUTF();
aligner = IOUtils.newInstance(alignerClass);
aligner.readBinary(in);
}
@Override
public byte[] binaryHeader() {
return this.getClass().getName().getBytes();
}
@Override
public void writeBinary(DataOutput out) throws IOException {
eigen.writeBinary(out);
out.writeUTF(aligner.getClass().getName());
aligner.writeBinary(out);
}
@Override
public void train(final List extends T> data) {
final List patches = new AbstractList() {
@Override
public FImage get(int index) {
return aligner.align(data.get(index));
}
@Override
public int size() {
return data.size();
}
};
eigen.train(patches);
}
/**
* Train from a dataset
*
* @param data
* the dataset
*/
public void train(final Dataset extends T> data) {
train(DatasetAdaptors.asList(data));
}
@Override
public String toString() {
return String.format("EigenFaceFeature.Extractor[aligner=%s]", this.aligner);
}
}
private DoubleFV fv;
protected EigenFaceFeature() {
this(null);
}
/**
* Construct the EigenFaceFeature with the given feature vector.
*
* @param fv
* the feature vector
*/
public EigenFaceFeature(DoubleFV fv) {
this.fv = fv;
}
@Override
public void readBinary(DataInput in) throws IOException {
fv = new DoubleFV();
fv.readBinary(in);
}
@Override
public byte[] binaryHeader() {
return getClass().getName().getBytes();
}
@Override
public void writeBinary(DataOutput out) throws IOException {
fv.writeBinary(out);
}
@Override
public DoubleFV getFeatureVector() {
return fv;
}
}