org.openimaj.image.processing.face.recognition.FisherFaceRecogniser Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of faces Show documentation
Show all versions of faces Show documentation
Implementation of a flexible face-recognition pipeline,
including pluggable detectors, aligners, feature extractors
and recognisers.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.processing.face.recognition;
import org.openimaj.data.dataset.GroupedDataset;
import org.openimaj.data.dataset.ListDataset;
import org.openimaj.feature.DoubleFV;
import org.openimaj.feature.DoubleFVComparator;
import org.openimaj.feature.FVProviderExtractor;
import org.openimaj.image.processing.face.alignment.FaceAligner;
import org.openimaj.image.processing.face.detection.DetectedFace;
import org.openimaj.image.processing.face.feature.FisherFaceFeature.Extractor;
import org.openimaj.ml.annotation.IncrementalAnnotator;
import org.openimaj.ml.annotation.basic.KNNAnnotator;
/**
* Implementation of a {@link FaceRecogniser} based on Fisherfaces. Any kind of
* machine learning implementation can be used for the actual classification.
*
* @author Jonathon Hare ([email protected])
*
* @param
* Type of {@link DetectedFace}
* @param
* Type of object representing a person
*/
public class FisherFaceRecogniser
extends
LazyFaceRecogniser>
{
protected FisherFaceRecogniser() {
}
/**
* Construct with the given feature extractor and underlying
* {@link FaceRecogniser}.
*
* @param extractor
* the feature extractor
* @param internalRecogniser
* the face recogniser
*/
public FisherFaceRecogniser(Extractor extractor,
FaceRecogniser internalRecogniser)
{
super(extractor, internalRecogniser);
}
/**
* Construct with the given feature extractor and underlying
* {@link IncrementalAnnotator}.
*
* @param extractor
* the feature extractor
* @param annotator
* the annotator
*/
public FisherFaceRecogniser(Extractor extractor,
IncrementalAnnotator annotator)
{
this(extractor, AnnotatorFaceRecogniser.create(annotator));
}
/**
* Convenience method to create an {@link FisherFaceRecogniser} with a
* standard KNN classifier.
*
* @param
* The type of {@link DetectedFace}
* @param
* the type representing a person
* @param numComponents
* the number of principal components to keep
* @param aligner
* the face aligner
* @param k
* the number of nearest neighbours
* @param compar
* the distance comparison function
* @return a new {@link FisherFaceRecogniser}
*/
public static
FisherFaceRecogniser create(int numComponents, FaceAligner aligner, int k,
DoubleFVComparator compar)
{
final Extractor extractor = new Extractor(numComponents, aligner);
final FVProviderExtractor extractor2 = FVProviderExtractor.create(extractor);
final KNNAnnotator knn =
KNNAnnotator.create(extractor2, compar, k);
return new FisherFaceRecogniser(extractor, knn);
}
/**
* Convenience method to create an {@link FisherFaceRecogniser} with a
* standard KNN classifier, incorporating a threshold on the maximum
* distance (or minimum similarity) to allow a match.
*
* @param
* The type of {@link DetectedFace}
* @param
* the type representing a person
* @param numComponents
* the number of principal components to keep
* @param aligner
* the face aligner
* @param k
* the number of nearest neighbours
* @param compar
* the distance comparison function
* @param threshold
* a distance threshold to limit matches.
* @return a new {@link FisherFaceRecogniser}
*/
public static
FisherFaceRecogniser create(int numComponents, FaceAligner aligner, int k,
DoubleFVComparator compar, float threshold)
{
final Extractor extractor = new Extractor(numComponents, aligner);
final FVProviderExtractor extractor2 = FVProviderExtractor.create(extractor);
final KNNAnnotator knn =
KNNAnnotator.create(extractor2, compar, k, threshold);
return new FisherFaceRecogniser(extractor, knn);
}
@Override
protected void beforeBatchTrain(GroupedDataset, FACE> dataset) {
extractor.train(dataset);
}
@Override
public String toString() {
return String.format("FisherFaceRecogniser[extractor=%s; recogniser=%s]",
this.extractor, this.internalRecogniser);
}
}