org.openimaj.image.processing.face.tracking.KLTHaarFaceTracker Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of faces Show documentation
Show all versions of faces Show documentation
Implementation of a flexible face-recognition pipeline,
including pluggable detectors, aligners, feature extractors
and recognisers.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
*
*/
package org.openimaj.image.processing.face.tracking;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import org.openimaj.image.FImage;
import org.openimaj.image.processing.face.detection.DetectedFace;
import org.openimaj.image.processing.face.detection.HaarCascadeDetector;
import org.openimaj.math.geometry.shape.Rectangle;
import org.openimaj.video.processing.tracking.BasicObjectTracker;
import org.openimaj.video.tracking.klt.KLTTracker;
/**
* A face tracker that uses the {@link HaarCascadeDetector} to detect faces in
* the image and then tracks them using the {@link KLTTracker}.
*
* @author David Dupplaw ([email protected])
*
* @created 13 Oct 2011
*/
public class KLTHaarFaceTracker implements FaceTracker {
/** The face detector used to detect the faces */
private final HaarCascadeDetector faceDetector = new HaarCascadeDetector();
/** A list of trackers that are tracking faces within the image */
private final List trackers = new ArrayList();
/** The previous frame */
private FImage previousFrame = null;
/** When all faces are lost, the frame is retried */
private boolean retryFrame = false;
/** The number of frames to force a retry */
private int forceRetry = -1;
/** Used for forcing retry */
private int frameCounter = 0;
private final float detectionScalar = 1.2f;
/**
* Default constructor that takes the minimum size (in pixels) of detections
* that should be considered faces.
*
* @param minSize
* The minimum size of face boxes
*/
public KLTHaarFaceTracker(final int minSize) {
this.faceDetector.setMinSize(minSize);
}
/**
* Used to detect faces when there is no current state.
*
* @return The list of detected faces
*/
private List detectFaces(final FImage img) {
return this.faceDetector.detectFaces(img);
}
/**
* {@inheritDoc}
*
* @see org.openimaj.image.processing.face.tracking.FaceTracker#trackFace(org.openimaj.image.Image)
*/
@Override
public List trackFace(final FImage img)
{
List detectedFaces = new ArrayList();
// Determine whether we need to force a retry now
if (this.forceRetry != -1 && this.frameCounter % this.forceRetry == 0)
this.trackers.clear();
// If we're just starting tracking, find some features and start
// tracking them.
if (this.previousFrame == null || this.trackers.size() == 0) {
// Detect the faces in the image.
final List faces = this.detectFaces(img);
// Create trackers for each face found
for (final DetectedFace face : faces) {
// Create a new tracker for this face
final BasicObjectTracker faceTracker = new BasicObjectTracker();
final Rectangle r = face.getBounds();
r.scaleCentroid(this.detectionScalar);
faceTracker.initialiseTracking(r, img);
this.trackers.add(faceTracker);
// Store the last frame
this.previousFrame = img;
}
detectedFaces = faces;
} else
// If we have a previous frame, attempt to track the frame
if (this.previousFrame != null) {
// Update all the trackers
final Iterator i = this.trackers.iterator();
while (i.hasNext()) {
final BasicObjectTracker tracker = i.next();
if (tracker.trackObject(img).size() == 0)
i.remove();
else {
// Store the bounding box of the tracked features as the
// face
detectedFaces
.add(new DetectedFace(
tracker.getFeatureList().getBounds(),
img.extractROI(tracker.getFeatureList().getBounds()),
tracker.getFeatureList().countRemainingFeatures()));
// Store the last frame
this.previousFrame = img;
}
}
if (this.trackers.size() == 0 && this.retryFrame == false) {
this.retryFrame = true;
detectedFaces = this.trackFace(img);
}
}
this.frameCounter++;
this.retryFrame = false;
return detectedFaces;
}
/**
* @return the forceRetry
*/
public int getForceRetry()
{
return this.forceRetry;
}
/**
* @param forceRetry
* the forceRetry to set
*/
public void setForceRetry(final int forceRetry)
{
this.forceRetry = forceRetry;
}
}