
org.openimaj.image.annotation.evaluation.datasets.CIFAR100Dataset Maven / Gradle / Ivy
The newest version!
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.annotation.evaluation.datasets;
import java.io.DataInputStream;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.util.List;
import org.apache.commons.io.FileUtils;
import org.apache.commons.io.IOUtils;
import org.apache.commons.vfs2.FileObject;
import org.apache.commons.vfs2.FileSystemException;
import org.apache.commons.vfs2.FileSystemManager;
import org.apache.commons.vfs2.VFS;
import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.data.DataUtils;
import org.openimaj.data.dataset.GroupedDataset;
import org.openimaj.data.dataset.ListBackedDataset;
import org.openimaj.data.dataset.ListDataset;
import org.openimaj.data.dataset.MapBackedDataset;
import org.openimaj.experiment.annotations.DatasetDescription;
import org.openimaj.image.MBFImage;
import org.openimaj.image.annotation.evaluation.datasets.cifar.BinaryReader;
/**
* CIFAR-100 Dataset. Contains 60000 tiny images in 100 classes (600 per class).
* There are 500 training images/class and 100 test. Each image is 32x32 pixels.
*
* @author Jonathon Hare ([email protected])
*
*/
@Reference(
type = ReferenceType.Article,
author = { "Krizhevsky, A.", "Hinton, G." },
title = "Learning multiple layers of features from tiny images",
year = "2009",
journal = "Master's thesis, Department of Computer Science, University of Toronto",
publisher = "Citeseer")
@DatasetDescription(
name = "CIFAR-100",
description = "This dataset is just like CIFAR-10, except it has 100 "
+ "classes containing 600 images each. There are 500 training images "
+ "and 100 testing images per class. The 100 classes in the CIFAR-100 "
+ "are grouped into 20 superclasses. Each image comes with a \"fine\" "
+ "label (the class to which it belongs) and a \"coarse\" label "
+ "(the superclass to which it belongs).",
creator = "Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton",
url = "http://www.cs.toronto.edu/~kriz/cifar.html",
downloadUrls = {
"http://datasets.openimaj.org/cifar/cifar-100-binary.tar.gz",
})
public class CIFAR100Dataset extends CIFARDataset {
private static final String DATA_TGZ = "cifar/cifar-100-binary.tar.gz";
private static final String DOWNLOAD_URL = "http://datasets.openimaj.org/cifar/cifar-100-binary.tar.gz";
private static final String TRAINING_FILE = "train.bin";
private static final String TEST_FILE = "test.bin";
private static final String FINE_CLASSES_FILE = "fine_label_names.txt";
private static final String COARSE_CLASSES_FILE = "coarse_label_names.txt";
private CIFAR100Dataset() {
}
private static String downloadAndGetPath() throws IOException {
final File dataset = DataUtils.getDataLocation(DATA_TGZ);
if (!(dataset.exists())) {
dataset.getParentFile().mkdirs();
FileUtils.copyURLToFile(new URL(DOWNLOAD_URL), dataset);
}
return "tgz:file:" + dataset.toString() + "!cifar-100-binary/";
}
/**
* Load the training images using the given reader. To load the images as
* {@link MBFImage}s, you would do the following:
* CIFAR100Dataset.getTrainingImages(CIFAR100Dataset.MBFIMAGE_READER);
*
*
* @param reader
* the reader
* @param fineLabels
* if true, then the fine labels will be used; otherwise the
* coarse superclass labels will be used.
* @return the training image dataset
* @throws IOException
*/
public static GroupedDataset, IMAGE> getTrainingImages(BinaryReader reader,
boolean fineLabels)
throws IOException
{
final MapBackedDataset, IMAGE> dataset = new MapBackedDataset, IMAGE>();
final FileSystemManager fsManager = VFS.getManager();
final FileObject base = fsManager.resolveFile(downloadAndGetPath());
final List classList = loadClasses(dataset, base, fineLabels);
DataInputStream is = null;
try {
is = new DataInputStream(base.resolveFile(TRAINING_FILE).getContent().getInputStream());
loadData(is, dataset, classList, reader, 50000, fineLabels);
} finally {
IOUtils.closeQuietly(is);
}
return dataset;
}
private static List loadClasses(final MapBackedDataset, IMAGE> dataset,
final FileObject base, boolean fine) throws FileSystemException, IOException
{
InputStream classStream = null;
List classList = null;
try {
if (fine)
classStream = base.resolveFile(FINE_CLASSES_FILE).getContent().getInputStream();
else
classStream = base.resolveFile(COARSE_CLASSES_FILE).getContent().getInputStream();
classList = IOUtils.readLines(classStream);
} finally {
IOUtils.closeQuietly(classStream);
}
for (final String clz : classList)
dataset.put(clz, new ListBackedDataset());
return classList;
}
private static void loadData(DataInputStream is,
MapBackedDataset, IMAGE> dataset, List classList,
BinaryReader reader, int num, boolean fine) throws IOException
{
for (int i = 0; i < num; i++) {
final int coarseClz = is.read();
final int fineClz = is.read();
final int clz = fine ? fineClz : coarseClz;
final String clzStr = classList.get(clz);
final byte[] record = new byte[32 * 32 * 3];
is.readFully(record);
dataset.get(clzStr).add(reader.read(record));
}
}
/**
* Load the test images using the given reader. To load the images as
* {@link MBFImage}s, you would do the following:
* CIFAR100Dataset.getTestImages(CIFAR100Dataset.MBFIMAGE_READER);
*
*
* @param reader
* the reader
* @param fineLabels
* if true, then the fine labels will be used; otherwise the
* coarse superclass labels will be used.
* @return the test image dataset
* @throws IOException
*/
public static GroupedDataset, IMAGE> getTestImages(BinaryReader reader,
boolean fineLabels)
throws IOException
{
final MapBackedDataset, IMAGE> dataset = new MapBackedDataset, IMAGE>();
final FileSystemManager fsManager = VFS.getManager();
final FileObject base = fsManager.resolveFile(downloadAndGetPath());
final List classList = loadClasses(dataset, base, fineLabels);
DataInputStream is = null;
try {
is = new DataInputStream(base.resolveFile(TEST_FILE).getContent().getInputStream());
loadData(is, dataset, classList, reader, 10000, fineLabels);
} finally {
IOUtils.closeQuietly(is);
}
return dataset;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy