Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
*
*/
package org.openimaj.image.annotation.evaluation.datasets;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.data.dataset.GroupedDataset;
import org.openimaj.data.dataset.ListBackedDataset;
import org.openimaj.data.dataset.ListDataset;
import org.openimaj.data.dataset.MapBackedDataset;
import org.openimaj.experiment.annotations.DatasetDescription;
import org.openimaj.experiment.evaluation.agreement.CohensKappaInterraterAgreement;
import org.openimaj.experiment.evaluation.agreement.MajorityVoting;
import org.openimaj.ml.annotation.ScoredAnnotation;
import org.openimaj.util.iterator.TextLineIterable;
import org.openimaj.util.pair.ObjectFloatPair;
import org.openimaj.web.flickr.FlickrImage;
/**
* A wrapper dataset for the MMSys2013 Fashion-Focussed Creative Commons social
* dataset (Loni, et.al).
*
* TODO: Need to add the citation here. From
* http://dl.acm.org/citation.cfm?id=2483984
*
* @author David Dupplaw ([email protected])
* @created 12 Aug 2013
* @version $Author$, $Revision$, $Date$
*/
@Reference(
type = ReferenceType.Inproceedings,
author = { "Loni, Babak", "Menendez, Maria", "Georgescu, Mihai", "Galli, Luca", "Massari, Claudio", "Altingovde, Ismail Sengor", "Martinenghi, Davide", "Melenhorst, Mark", "Vliegendhart, Raynor", "Larson, Martha" },
title = "Fashion-focused creative commons social dataset",
year = "2013",
booktitle = "Proceedings of the 4th ACM Multimedia Systems Conference",
pages = { "72", "", "77" },
url = "http://doi.acm.org/10.1145/2483977.2483984",
publisher = "ACM",
series = "MMSys '13",
customData = {
"isbn", "978-1-4503-1894-5",
"location", "Oslo, Norway",
"numpages", "6",
"doi", "10.1145/2483977.2483984",
"acmid", "2483984",
"address", "New York, NY, USA",
"keywords", "crowdsourcing, dataset, fashion, multimedia content analysis"
})
@DatasetDescription(
name = "Fashion-Focused Creative Commons Social Dataset",
description = "a fashion-focused Creative Commons dataset, which is "
+ "designed to contain a mix of general images as well as a large "
+ "component of images that are focused on fashion (i.e., relevant "
+ "to particular clothing items or fashion accessories)",
creator = "Babak Loni, Maria Menendez, Mihai Georgescu, Luca Galli, "
+ "Claudio Massari, Ismail Sengor Altingovde, Davide Martinenghi, "
+ "Mark Melenhorst, Raynor Vliegendhart, Martha Larson",
downloadUrls = {
"http://skuld.cs.umass.edu/traces/mmsys/2013/fashion/Fashion Dataset.zip" })
public class MMSys2013
{
/**
* Allowable types of answer for each question.
*
* @author David Dupplaw ([email protected])
* @created 12 Aug 2013
* @version $Author$, $Revision$, $Date$
*/
public static enum QuestionResponse
{
/** No */
NO,
/** Yes */
YES,
/** Not sure */
NOT_SURE,
/** Question was unanswered */
UNANSWERED;
}
/**
* A response to a HIT
*
* @author David Dupplaw ([email protected])
* @created 12 Aug 2013
* @version $Author$, $Revision$, $Date$
*/
public static class Response
{
/** Whether the image contains a depicition of the category subject */
public QuestionResponse containsCategoryDepiction;
/** Whether the image is in the correct category */
public QuestionResponse isInCorrectCategory;
/** How familiar is the responder with the category */
public int familiarityWithCategory;
/**
* Constructor
*
* @param r1
* contains category depiction
* @param r2
* is in correct category
* @param familiarity
* familiarity with subject
*/
public Response(final QuestionResponse r1, final QuestionResponse r2, final int familiarity)
{
this.containsCategoryDepiction = r1;
this.isInCorrectCategory = r2;
this.familiarityWithCategory = familiarity;
}
@Override
public String toString()
{
return "{" + this.containsCategoryDepiction + "," +
this.isInCorrectCategory + "," + this.familiarityWithCategory + "}";
}
}
/**
* A record in the Fashion 10,000 dataset.
*
* @author David Dupplaw ([email protected])
* @created 12 Aug 2013
* @version $Author$, $Revision$, $Date$
*/
protected static class Record
{
/** The Flickr Photo */
public FlickrImage image;
/** The category in which the image was found */
public String category;
/** A set of responses for this image */
public Response[] annotations;
@Override
public String toString()
{
return this.image.getId() + ":" + this.category + "[" +
Arrays.toString(this.annotations) + "]";
}
}
protected String baseLocation =
"/data/degas/mediaeval/mediaeval-crowdsourcing/MMSys2013/";
protected String expertDataFile =
"Annotations/Annotation_PerImage_Trusted.csv";
protected String nonExpertDataFile =
"Annotations/Annotation_PerImage_NonExperts.csv";
protected String groundTruthFile =
"Annotations/GroundTruth.csv";
protected String queriesFile =
"Metadata/queries.csv";
/**
* Returns the ground truth set.
*
* @return The grouped dataset
*/
public GroupedDataset, Response>, Response>
getGroundTruth()
{
final GroupedDataset, Response>, Response> results = new MapBackedDataset, Response>, MMSys2013.Response>();
// The ground truth dataset doesn't contain categories, sadly - just
// the filename and the results. So we need to go and get the categories
// for each of the images first. We'll do that from the queries file.
final HashMap categoryCache = new HashMap();
boolean firstLine = true;
for (final String line : new TextLineIterable(new File(this.baseLocation, this.queriesFile)))
{
if (!firstLine)
{
final String[] parts = line.split(",", -1);
// The substrings remove the quotes either side of the value
categoryCache.put(
Long.parseLong(parts[3].substring(1).substring(0, parts[3].length() - 2)),
parts[0].substring(1).substring(0, parts[0].length() - 2));
}
firstLine = false;
}
firstLine = true;
for (final String line : new TextLineIterable(new File(this.baseLocation, this.groundTruthFile)))
{
if (!firstLine)
{
try
{
final String[] parts = line.split(",", -1);
// Get the category for the given image.
final String url = parts[0];
final FlickrImage fi = FlickrImage.create(new URL(url));
final String cat = categoryCache.get(fi.getId());
// Get the category list
GroupedDataset, Response> gds = results.get(cat);
// Check whether we already have a dataset for
// the image in this category
if (gds == null)
{
// Create a new dataset for images in this category
gds = new MapBackedDataset, Response>();
results.put(cat, gds);
}
// See if we have any responses for this image already
ListDataset ids = gds.get(url);
// If not, create the dataset for this image
if (ids == null)
{
ids = new ListBackedDataset();
gds.put(url, ids);
}
// Get the response for this image and add it
final Response rr = new Response(
this.parseQR(parts[1]),
this.parseQR(parts[2]), 1);
ids.add(rr);
} catch (final MalformedURLException e)
{
e.printStackTrace();
}
}
firstLine = false;
}
return results;
}
/**
* Returns the results from the non-expert turkers.
*
* @return The grouped dataset
*/
public GroupedDataset, Response>, Response> getNonExpertData()
{
return this.parseMetadata(new File(this.baseLocation, this.nonExpertDataFile));
}
/**
* Returns the results from the expert turkers.
*
* @return The grouped dataset
*/
public GroupedDataset, Response>, Response> getExpertData()
{
return this.parseMetadata(new File(this.baseLocation, this.expertDataFile));
}
/**
* @param metadataFile
* @return A grouped dataset
*/
public GroupedDataset, Response>, Response> parseMetadata(
final File metadataFile)
{
final GroupedDataset, Response>, Response> results = new MapBackedDataset, Response>, MMSys2013.Response>();
BufferedReader br = null;
try
{
br = new BufferedReader(new FileReader(metadataFile));
String line;
boolean firstLine = true;
int count = 1;
while ((line = br.readLine()) != null)
{
if (!firstLine)
{
try
{
final String[] parts = line.split(",", -1);
final Response[] r = new Response[3];
r[0] = new Response(this.parseQR(parts[3]),
this.parseQR(parts[6]), this.parseF(parts[9]));
r[1] = new Response(this.parseQR(parts[4]),
this.parseQR(parts[7]), this.parseF(parts[10]));
r[2] = new Response(this.parseQR(parts[5]),
this.parseQR(parts[8]), parts.length > 11 ?
this.parseF(parts[11]) : -1);
GroupedDataset, Response> gds = results.get(parts[2]);
// Check whether we already have a dataset for
// the image in this category
if (gds == null)
{
// Create a new dataset for images in this category
gds = new MapBackedDataset, Response>();
results.put(parts[2], gds);
}
// See if we have any responses for this image already
ListDataset ids = gds.get(parts[1]);
// If not, create the dataset for this image
if (ids == null)
{
ids = new ListBackedDataset();
gds.put(parts[1], ids);
}
// Add the each response for this image
for (final Response rr : r)
ids.add(rr);
} catch (final Exception e)
{
System.err.println("Error on line " + count);
e.printStackTrace();
}
}
firstLine = false;
count++;
}
br.close();
} catch (final FileNotFoundException e)
{
e.printStackTrace();
} catch (final IOException e)
{
e.printStackTrace();
} finally
{
if (br != null)
try
{
br.close();
} catch (final IOException e)
{
e.printStackTrace();
}
}
return results;
}
/**
* Given a string returns a question response.
*
* @param qr
* The string
* @return A {@link QuestionResponse}
*/
protected QuestionResponse parseQR(final String qr)
{
if (qr.toLowerCase().equals("yes"))
return QuestionResponse.YES;
if (qr.toLowerCase().equals("no"))
return QuestionResponse.NO;
if (qr.toLowerCase().equals("notsure"))
return QuestionResponse.NOT_SURE;
return QuestionResponse.UNANSWERED;
}
protected int parseF(final String f)
{
try
{
return Integer.parseInt(f);
} catch (final NumberFormatException e)
{
return -1;
}
}
/**
* For a given {@link GroupedDataset} that represents the results from a
* single category, returns a list of scored annotations for each group, for
* question 1 (contains depication of category).
*
* @param data
* The data
* @return a list of {@link ScoredAnnotation} linked to image URL
*/
public static Map>>
getAnnotationsQ1(
final GroupedDataset, Response> data)
{
final Map>> r =
new HashMap>>();
// Loop through the images in this dataset
for (final String imgUrl : data.getGroups())
{
final ListDataset l = data.get(imgUrl);
final List> l2 =
new ArrayList>();
r.put(imgUrl, l2);
// Loop through the responses for this image
for (final Response rr : l)
l2.add(new ScoredAnnotation(
rr.containsCategoryDepiction, rr.familiarityWithCategory));
}
return r;
}
/**
* For a given {@link GroupedDataset} that represents the results from a
* single category, returns a list of scored annotations for each group, for
* question 2 (is in category).
*
* @param data
* The group name to retrieve
* @return a list of {@link ScoredAnnotation} linked to image URL
*/
public static Map>>
getAnnotationsQ2(
final GroupedDataset, Response> data)
{
final Map>> r =
new HashMap>>();
// Loop through the images in this dataset
for (final String imgUrl : data.getGroups())
{
final ListDataset l = data.get(imgUrl);
final List> l2 =
new ArrayList>();
r.put(imgUrl, l2);
// Loop through the responses for this image
for (final Response rr : l)
l2.add(new ScoredAnnotation(
rr.isInCorrectCategory, rr.familiarityWithCategory));
}
return r;
}
/**
* @param args
*/
public static void main(final String[] args)
{
System.out.println();
// Expert annotations for Q1 and Q2
final Map>> q1r1 =
MMSys2013.getAnnotationsQ1(new MMSys2013().getExpertData().get("Cowboy hat"));
final Map>> q2r1 =
MMSys2013.getAnnotationsQ2(new MMSys2013().getExpertData().get("Cowboy hat"));
// Non expert annotations for Q1 and Q2
final Map>> q1r2 =
MMSys2013.getAnnotationsQ1(new MMSys2013().getNonExpertData().get("Cowboy hat"));
final Map>> q2r2 =
MMSys2013.getAnnotationsQ2(new MMSys2013().getNonExpertData().get("Cowboy hat"));
// Ground truth data for Q1 and Q2
final Map>> q1gt =
MMSys2013.getAnnotationsQ1(new MMSys2013().getGroundTruth().get("Cowboy hat"));
final Map>> q2gt =
MMSys2013.getAnnotationsQ2(new MMSys2013().getGroundTruth().get("Cowboy hat"));
// Majority voting on the data sets
final Map>> q1r1mv =
MajorityVoting.calculateBasicMajorityVote(q1r1);
final Map>> q2r1mv =
MajorityVoting.calculateBasicMajorityVote(q2r1);
final Map>> q1r2mv =
MajorityVoting.calculateBasicMajorityVote(q1r2);
final Map>> q2r2mv =
MajorityVoting.calculateBasicMajorityVote(q2r2);
final Map>> q1gtmv =
MajorityVoting.calculateBasicMajorityVote(q1gt);
final Map>> q2gtmv =
MajorityVoting.calculateBasicMajorityVote(q2gt);
// Agreement output
System.out.println("Question 1 agreement between raters 1 and 2: " +
CohensKappaInterraterAgreement.calculate(q1r1mv, q1r2mv));
System.out.println("Question 1 agreement between rater 1 and GT: " +
CohensKappaInterraterAgreement.calculate(q1r1mv, q1gtmv));
System.out.println("Question 1 agreement between rater 2 and GT: " +
CohensKappaInterraterAgreement.calculate(q1r2mv, q1gtmv));
System.out.println("Question 2 agreement between raters 1 and 2: " +
CohensKappaInterraterAgreement.calculate(q2r1mv, q2r2mv));
System.out.println("Question 2 agreement between rater 1 and GT: " +
CohensKappaInterraterAgreement.calculate(q2r1mv, q2gtmv));
System.out.println("Question 2 agreement between rater 2 and GT: " +
CohensKappaInterraterAgreement.calculate(q2r2mv, q2gtmv));
}
}