org.openimaj.image.connectedcomponent.proc.BoundaryDistanceDescriptor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of image-feature-extraction Show documentation
Show all versions of image-feature-extraction Show documentation
Methods for the extraction of low-level image features, including global image features and pixel/patch classification models.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.connectedcomponent.proc;
import java.util.List;
import org.openimaj.feature.DoubleFV;
import org.openimaj.feature.FeatureVectorProvider;
import org.openimaj.image.pixel.ConnectedComponent;
import org.openimaj.image.pixel.ConnectedComponent.ConnectMode;
import org.openimaj.image.pixel.Pixel;
import org.openimaj.image.processor.connectedcomponent.ConnectedComponentProcessor;
import org.openimaj.math.util.Interpolation;
/**
* Distance-from-centroid descriptor for convex shapes. Sweeps the
* edge of the shape over all angles in 0..360 and records the distance
* from the centroid.
*
* Scale invariance is optionally achieved by normalising the
* resultant vector to sum to 1.
*
* Rotation invariance is optionally achieved by measuring angles
* from the dominant orientation of the connected component.
*
* @author Jonathon Hare ([email protected])
*
*/
public class BoundaryDistanceDescriptor implements ConnectedComponentProcessor, FeatureVectorProvider {
/**
* The number of samples
*/
public final static int DESCRIPTOR_LENGTH = 360;
/**
* The descriptor vector, measusring distance from centroid per degree
*/
public double [] descriptor = new double[DESCRIPTOR_LENGTH];
protected boolean normaliseScale;
protected boolean normaliseAngle;
/**
* Construct the BoundaryDistanceDescriptor with both scale and
* orientation normalisation enabled
*/
public BoundaryDistanceDescriptor() {
this(true, true);
}
/**
* Construct the BoundaryDistanceDescriptor with optional scale and
* orientation invariance.
* @param normaliseDistance enable scale invariance
* @param normaliseAngle enable rotation invariance
*/
public BoundaryDistanceDescriptor(boolean normaliseDistance, boolean normaliseAngle) {
this.normaliseScale = normaliseDistance;
this.normaliseAngle = normaliseAngle;
}
@Override
public void process(ConnectedComponent cc) {
cc = new ConnectedComponent(cc.calculateConvexHull()); //make shape convex
List bound = cc.getInnerBoundary(ConnectMode.CONNECT_8);
double [] centroid = cc.calculateCentroid();
double direction = cc.calculateDirection();
float[] distances = new float[bound.size()];
float[] angle = new float[bound.size()];
int count = 0;
for (int i=0; i= 0 ? angle[i] : (angle[i] + 2.0*Math.PI));
angle[i] = (float) (360.0 * angle[i] / (2.0*Math.PI));
}
for (int i=0; i 350 && aj < 10) if (i<10) an-=360; else aj+=360;
if (aj > 350 && an < 10) if (i<10) aj-=360; else an+=360;
if (aj==i) {
index1 = j;
index2 = j;
break;
} else if (aj aj) {
index1 = j;
index2 = n;
break;
}
} else {
if (i <= aj && i > an) {
index1 = j;
index2 = n;
break;
}
}
}
descriptor[i] = Interpolation.lerp(i, angle[index1], distances[index1], angle[index2], distances[index2]);
count += descriptor[i];
}
if (normaliseScale) {
for (int i=0; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy