All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.image.feature.global.ColourContrast Maven / Gradle / Ivy

Go to download

Methods for the extraction of low-level image features, including global image features and pixel/patch classification models.

There is a newer version: 1.3.10
Show newest version
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.openimaj.image.feature.global;

import java.util.List;

import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.feature.DoubleFV;
import org.openimaj.feature.FeatureVectorProvider;
import org.openimaj.image.MBFImage;
import org.openimaj.image.analyser.ImageAnalyser;
import org.openimaj.image.analysis.colour.CIEDE2000;
import org.openimaj.image.colour.ColourSpace;
import org.openimaj.image.pixel.ConnectedComponent;
import org.openimaj.image.pixel.Pixel;
import org.openimaj.image.pixel.PixelSet;
import org.openimaj.image.segmentation.FelzenszwalbHuttenlocherSegmenter;

/**
 * Implementation of a color contrast feature.
 * 

* The feature is calculated by performing a weighted average of the average * colour difference of all the segments in the image. * * @author Jonathon Hare ([email protected]) */ @Reference( type = ReferenceType.Inproceedings, author = { "Che-Hua Yeh", "Yuan-Chen Ho", "Brian A. Barsky", "Ming Ouhyoung" }, title = "Personalized Photograph Ranking and Selection System", year = "2010", booktitle = "Proceedings of ACM Multimedia", pages = { "211", "220" }, month = "October", customData = { "location", "Florence, Italy" }) public class ColourContrast implements ImageAnalyser, FeatureVectorProvider { FelzenszwalbHuttenlocherSegmenter segmenter; double contrast; /** * Construct the {@link ColourContrast} feature extractor using the default * settings for the {@link FelzenszwalbHuttenlocherSegmenter}. */ public ColourContrast() { segmenter = new FelzenszwalbHuttenlocherSegmenter(); } /** * Construct the {@link ColourContrast} feature extractor with the given * parameters for the underlying {@link FelzenszwalbHuttenlocherSegmenter}. * * @param sigma * amount of blurring * @param k * threshold * @param minSize * minimum allowed component size */ public ColourContrast(float sigma, float k, int minSize) { segmenter = new FelzenszwalbHuttenlocherSegmenter(sigma, k, minSize); } @Override public DoubleFV getFeatureVector() { return new DoubleFV(new double[] { contrast }); } /* * (non-Javadoc) * * @see * org.openimaj.image.processor.ImageProcessor#processImage(org.openimaj * .image.Image) */ @Override public void analyseImage(MBFImage image) { final List ccs = segmenter.segment(image); final MBFImage labImage = ColourSpace.convert(image, ColourSpace.CIE_Lab); final float[][] avgs = new float[ccs.size()][3]; final int w = image.getWidth(); final int h = image.getHeight(); // calculate patch average colours for (int i = 0; i < avgs.length; i++) { for (final Pixel p : ccs.get(i).pixels) { final Float[] v = labImage.getPixel(p); avgs[i][0] += v[0]; avgs[i][0] += v[1]; avgs[i][0] += v[2]; } final int sz = ccs.get(i).pixels.size(); avgs[i][0] /= sz; avgs[i][1] /= sz; avgs[i][2] /= sz; } for (int i = 0; i < avgs.length; i++) { for (int j = i + 1; j < avgs.length; j++) { final PixelSet ci = ccs.get(i); final PixelSet cj = ccs.get(i); final float C = CIEDE2000.calculateDeltaE(avgs[i], avgs[j]); contrast += (1 - distance(ci, cj, w, h)) * (C / (ci.calculateArea() * cj.calculateArea())); } } } float distance(PixelSet c1, PixelSet c2, int w, int h) { final double[] cen1 = c1.calculateCentroid(); final double[] cen2 = c2.calculateCentroid(); final double dx = (cen1[0] - cen2[0]) / w; final double dy = (cen1[1] - cen2[1]) / h; return (float) (Math.sqrt(dx * dx + dy * dy) / Math.sqrt(2)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy