org.openimaj.image.feature.global.ColourContrast Maven / Gradle / Ivy
Show all versions of image-feature-extraction Show documentation
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.feature.global;
import java.util.List;
import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.feature.DoubleFV;
import org.openimaj.feature.FeatureVectorProvider;
import org.openimaj.image.MBFImage;
import org.openimaj.image.analyser.ImageAnalyser;
import org.openimaj.image.analysis.colour.CIEDE2000;
import org.openimaj.image.colour.ColourSpace;
import org.openimaj.image.pixel.ConnectedComponent;
import org.openimaj.image.pixel.Pixel;
import org.openimaj.image.pixel.PixelSet;
import org.openimaj.image.segmentation.FelzenszwalbHuttenlocherSegmenter;
/**
* Implementation of a color contrast feature.
*
* The feature is calculated by performing a weighted average of the average
* colour difference of all the segments in the image.
*
* @author Jonathon Hare ([email protected])
*/
@Reference(
type = ReferenceType.Inproceedings,
author = { "Che-Hua Yeh", "Yuan-Chen Ho", "Brian A. Barsky", "Ming Ouhyoung" },
title = "Personalized Photograph Ranking and Selection System",
year = "2010",
booktitle = "Proceedings of ACM Multimedia",
pages = { "211", "220" },
month = "October",
customData = { "location", "Florence, Italy" })
public class ColourContrast implements ImageAnalyser, FeatureVectorProvider {
FelzenszwalbHuttenlocherSegmenter segmenter;
double contrast;
/**
* Construct the {@link ColourContrast} feature extractor using the default
* settings for the {@link FelzenszwalbHuttenlocherSegmenter}.
*/
public ColourContrast() {
segmenter = new FelzenszwalbHuttenlocherSegmenter();
}
/**
* Construct the {@link ColourContrast} feature extractor with the given
* parameters for the underlying {@link FelzenszwalbHuttenlocherSegmenter}.
*
* @param sigma
* amount of blurring
* @param k
* threshold
* @param minSize
* minimum allowed component size
*/
public ColourContrast(float sigma, float k, int minSize) {
segmenter = new FelzenszwalbHuttenlocherSegmenter(sigma, k, minSize);
}
@Override
public DoubleFV getFeatureVector() {
return new DoubleFV(new double[] { contrast });
}
/*
* (non-Javadoc)
*
* @see
* org.openimaj.image.processor.ImageProcessor#processImage(org.openimaj
* .image.Image)
*/
@Override
public void analyseImage(MBFImage image) {
final List ccs = segmenter.segment(image);
final MBFImage labImage = ColourSpace.convert(image, ColourSpace.CIE_Lab);
final float[][] avgs = new float[ccs.size()][3];
final int w = image.getWidth();
final int h = image.getHeight();
// calculate patch average colours
for (int i = 0; i < avgs.length; i++) {
for (final Pixel p : ccs.get(i).pixels) {
final Float[] v = labImage.getPixel(p);
avgs[i][0] += v[0];
avgs[i][0] += v[1];
avgs[i][0] += v[2];
}
final int sz = ccs.get(i).pixels.size();
avgs[i][0] /= sz;
avgs[i][1] /= sz;
avgs[i][2] /= sz;
}
for (int i = 0; i < avgs.length; i++) {
for (int j = i + 1; j < avgs.length; j++) {
final PixelSet ci = ccs.get(i);
final PixelSet cj = ccs.get(i);
final float C = CIEDE2000.calculateDeltaE(avgs[i], avgs[j]);
contrast += (1 - distance(ci, cj, w, h)) * (C / (ci.calculateArea() * cj.calculateArea()));
}
}
}
float distance(PixelSet c1, PixelSet c2, int w, int h) {
final double[] cen1 = c1.calculateCentroid();
final double[] cen2 = c2.calculateCentroid();
final double dx = (cen1[0] - cen2[0]) / w;
final double dy = (cen1[1] - cen2[1]) / h;
return (float) (Math.sqrt(dx * dx + dy * dy) / Math.sqrt(2));
}
}