All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.image.feature.global.ROIProportion Maven / Gradle / Ivy

Go to download

Methods for the extraction of low-level image features, including global image features and pixel/patch classification models.

There is a newer version: 1.3.10
Show newest version
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.openimaj.image.feature.global;

import gnu.trove.map.hash.TObjectFloatHashMap;
import gnu.trove.procedure.TObjectFloatProcedure;

import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.feature.DoubleFV;
import org.openimaj.feature.FeatureVectorProvider;
import org.openimaj.image.FImage;
import org.openimaj.image.MBFImage;
import org.openimaj.image.analyser.ImageAnalyser;
import org.openimaj.image.pixel.ConnectedComponent;
import org.openimaj.image.processor.connectedcomponent.render.BoundingBoxRenderer;
import org.openimaj.image.saliency.AchantaSaliency;
import org.openimaj.image.saliency.YehSaliency;
import org.openimaj.image.segmentation.FelzenszwalbHuttenlocherSegmenter;
import org.openimaj.util.array.ArrayUtils;

/**
 * Implementation of the region of interest based image simplicity measure
 * described by Yeh et al.
 * 

* Basically returns the proportion of the image that can be considered * interesting. * * @author Jonathon Hare ([email protected]) */ @Reference( type = ReferenceType.Inproceedings, author = { "Che-Hua Yeh", "Yuan-Chen Ho", "Brian A. Barsky", "Ming Ouhyoung" }, title = "Personalized Photograph Ranking and Selection System", year = "2010", booktitle = "Proceedings of ACM Multimedia", pages = { "211", "220" }, month = "October", customData = { "location", "Florence, Italy" }) public class ROIProportion implements ImageAnalyser, FeatureVectorProvider { protected YehSaliency saliencyGenerator; protected float alpha = 0.67f; protected double roiProportion; /** * Construct with the default values */ public ROIProportion() { saliencyGenerator = new YehSaliency(); } /** * Construct with the given alpha value, but use the defaults for the * {@link YehSaliency} estimator. * * @param alpha * the alpha value for determining the threshold */ public ROIProportion(float alpha) { this(); this.alpha = alpha; } /** * Construct with the given parameters. * * @param saliencySigma * smoothing for the {@link AchantaSaliency} class * @param segmenterSigma * smoothing for {@link FelzenszwalbHuttenlocherSegmenter}. * @param k * k value for {@link FelzenszwalbHuttenlocherSegmenter}. * @param minSize * minimum region size for * {@link FelzenszwalbHuttenlocherSegmenter}. * @param alpha * the alpha value for determining the threshold */ public ROIProportion(float saliencySigma, float segmenterSigma, float k, int minSize, float alpha) { saliencyGenerator = new YehSaliency(saliencySigma, segmenterSigma, k, minSize); this.alpha = alpha; } @Override public DoubleFV getFeatureVector() { return new DoubleFV(new double[] { roiProportion }); } /* * (non-Javadoc) * * @see * org.openimaj.image.analyser.ImageAnalyser#analyseImage(org.openimaj.image * .Image) */ @Override public void analyseImage(MBFImage image) { image.analyseWith(saliencyGenerator); final TObjectFloatHashMap componentMap = saliencyGenerator.getSaliencyComponents(); final float max = ArrayUtils.maxValue(componentMap.values()); final FImage map = new FImage(image.getWidth(), image.getHeight()); final float thresh = max * alpha; final BoundingBoxRenderer renderer = new BoundingBoxRenderer(map, 1F, true); componentMap.forEachEntry(new TObjectFloatProcedure() { @Override public boolean execute(ConnectedComponent cc, float sal) { if (sal >= thresh) { // note that this is reversed from the // paper, which doesn't seem to make // sense. renderer.process(cc); } return true; } }); roiProportion = 0; for (int y = 0; y < map.height; y++) for (int x = 0; x < map.width; x++) roiProportion += map.pixels[y][x]; roiProportion /= (map.width * map.height); // smaller simplicity means // smaller ROI } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy