org.openimaj.image.pixel.statistics.HistogramModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of image-feature-extraction Show documentation
Show all versions of image-feature-extraction Show documentation
Methods for the extraction of low-level image features, including global image features and pixel/patch classification models.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.pixel.statistics;
import org.openimaj.feature.FeatureVectorProvider;
import org.openimaj.image.MBFImage;
import org.openimaj.math.statistics.distribution.MultidimensionalHistogram;
import org.openimaj.util.pair.Pair;
/**
* A multidimensional histogram calculated from image pixels (assumes image is
* in 0-1 range)
*
* @author Jonathon Hare ([email protected])
*
*/
public class HistogramModel extends AbstractPixelStatisticsModel
implements
FeatureVectorProvider
{
private static final long serialVersionUID = 1L;
/**
* The histogram data
*/
public MultidimensionalHistogram histogram;
/**
* Construct with the given number of bins per dimension
*
* @param nbins
* the number of bins in each dimension for the histograms
*/
public HistogramModel(int... nbins) {
super(nbins.length);
assert (nbins.length > 0);
histogram = new MultidimensionalHistogram(nbins);
}
@Override
public void estimateModel(MBFImage... images) {
reset();
for (final MBFImage im : images) {
accum(im);
}
histogram.normalise();
}
protected void reset() {
for (int i = 0; i < histogram.values.length; i++)
histogram.values[i] = 0;
}
/**
* For a given index, map to the range of colours which could map to it
*
* @param index
* @return start/end colour
*/
public Pair colourRange(int index) {
final int[] coord = this.histogram.getCoordinates(index);
final float[] start = new float[coord.length];
final float[] end = new float[coord.length];
final int[] nbins = histogram.nbins;
for (int i = 0; i < coord.length; i++) {
start[i] = (float) coord[i] / (float) nbins[i];
end[i] = ((float) coord[i] + 1) / nbins[i];
}
return new Pair(start, end);
}
/**
* For a given index, get the average colour which would map to it
*
* @param index
* @return start/end colour
*/
public float[] colourAverage(int index) {
final int[] coord = this.histogram.getCoordinates(index);
final float[] average = new float[coord.length];
final int[] nbins = histogram.nbins;
for (int i = 0; i < coord.length; i++) {
final float start = (float) coord[i] / (float) nbins[i];
final float end = ((float) coord[i] + 1) / nbins[i];
average[i] = (start + end) / 2f;
}
return average;
}
protected void accum(MBFImage im) {
final int height = im.getHeight();
final int width = im.getWidth();
final int[] bins = new int[ndims];
final float[][][] bands = new float[im.numBands()][][];
for (int i = 0; i < bands.length; i++)
bands[i] = im.getBand(i).pixels;
final int[] nbins = histogram.nbins;
final double[] values = histogram.values;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
for (int i = 0; i < ndims; i++) {
bins[i] = (int) (bands[i][y][x] * (nbins[i]));
if (bins[i] >= nbins[i])
bins[i] = nbins[i] - 1;
}
int bin = 0;
for (int i = 0; i < ndims; i++) {
int f = 1;
for (int j = 0; j < i; j++)
f *= nbins[j];
bin += f * bins[i];
}
values[bin]++;
}
}
}
@Override
public String toString() {
return histogram.toString();
}
@Override
public HistogramModel clone() {
final HistogramModel model = new HistogramModel();
model.histogram = histogram.clone();
model.ndims = ndims;
return model;
}
@Override
public MultidimensionalHistogram getFeatureVector() {
return histogram;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy