org.openimaj.image.saliency.DepthOfFieldEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of image-feature-extraction Show documentation
Show all versions of image-feature-extraction Show documentation
Methods for the extraction of low-level image features, including global image features and pixel/patch classification models.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.saliency;
import java.util.Arrays;
import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.image.FImage;
import org.openimaj.image.processing.convolution.AverageBoxFilter;
import org.openimaj.image.processing.convolution.FConvolution;
/**
* Construct a map that shows the "focus" of each pixel.
* A value of 0 in the output corresponds to a sharp pixel, whilst higher
* values correspond to more blurred pixels.
*
* Algorithm based on:
* Yiwen Luo and Xiaoou Tang. 2008.
* Photo and Video Quality Evaluation: Focusing on the Subject.
* In Proceedings of the 10th European Conference on Computer Vision:
* Part III (ECCV '08), David Forsyth, Philip Torr, and Andrew Zisserman (Eds.).
* Springer-Verlag, Berlin, Heidelberg, 386-399. DOI=10.1007/978-3-540-88690-7_29
* http://dx.doi.org/10.1007/978-3-540-88690-7_29
*
* Note that this is not scale invariant - you will get different results with
* different sized images...
*
* @author Jonathon Hare ([email protected])
*/
@Reference(
type = ReferenceType.Inproceedings,
author = { "Luo, Yiwen", "Tang, Xiaoou" },
title = "Photo and Video Quality Evaluation: Focusing on the Subject",
year = "2008",
booktitle = "Proceedings of the 10th European Conference on Computer Vision: Part III",
pages = { "386", "", "399" },
url = "http://dx.doi.org/10.1007/978-3-540-88690-7_29",
publisher = "Springer-Verlag",
series = "ECCV '08",
customData = {
"isbn", "978-3-540-88689-1",
"location", "Marseille, France",
"numpages", "14",
"doi", "10.1007/978-3-540-88690-7_29",
"acmid", "1478204",
"address", "Berlin, Heidelberg"
}
)
public class DepthOfFieldEstimator implements SaliencyMapGenerator {
private static FConvolution DX_FILTER = new FConvolution(new float[][] {{1, -1}});
private static FConvolution DY_FILTER = new FConvolution(new float[][] {{1}, {-1}});
protected int maxKernelSize = 50;
protected int kernelSizeStep = 1;
protected int nbins = 41;
protected int windowSize = 3;
protected float[][] xHistograms;
protected float[][] yHistograms;
private FImage map;
/**
* Construct with the given parameters.
* @param maxKernelSize Maximum kernel size.
* @param kernelSizeStep Kernel step size.
* @param nbins Number of bins.
* @param windowSize window size.
*/
public DepthOfFieldEstimator(int maxKernelSize, int kernelSizeStep, int nbins, int windowSize) {
this.maxKernelSize = maxKernelSize;
this.kernelSizeStep = kernelSizeStep;
this.nbins = nbins;
this.windowSize = windowSize;
this.xHistograms = new float[maxKernelSize / kernelSizeStep][nbins];
this.yHistograms = new float[maxKernelSize / kernelSizeStep][nbins];
}
/**
* Construct with the default values (max kernel size = 50, step size = 1, 41 bins, window size of 3).
*/
public DepthOfFieldEstimator() {
this.xHistograms = new float[maxKernelSize / kernelSizeStep][nbins];
this.yHistograms = new float[maxKernelSize / kernelSizeStep][nbins];
}
protected void clearHistograms() {
for (float [] h : xHistograms)
Arrays.fill(h, 0);
for (float [] h : yHistograms)
Arrays.fill(h, 0);
}
/* (non-Javadoc)
* @see org.openimaj.image.processor.ImageProcessor#processImage(org.openimaj.image.Image)
*/
@Override
public void analyseImage(FImage image) {
clearHistograms();
for (int i=0; i bestLL) {
bestLL = newLL;
bestModel = i;
}
}
map.pixels[y][x] = bestModel;
}
}
}
}
private double calculatedLogLikelihood(int x, int y, FImage dx, FImage dy, int level) {
int border = windowSize / 2;
double LL = 0;
for (int j=y-border; j<=y+border; j++) {
for (int i=x-border; i<=x+border; i++) {
float vx = (dx.pixels[j][i] + 1) / 2;
int bx = (int) (vx * nbins);
if (bx >= nbins) bx --;
float vy = (dy.pixels[j][i] + 1) / 2;
int by = (int) (vy * nbins);
if (by >= nbins) by --;
LL += xHistograms[level][bx] + yHistograms[level][by];
}
}
return LL;
}
private void makeLogHistogram(float[] h, FImage im) {
int sum = 0;
for (int y=0; y= nbins) bin --;
h[bin]++;
sum++;
}
}
for (int i=0; i
© 2015 - 2024 Weber Informatics LLC | Privacy Policy