
org.openimaj.image.feature.local.engine.DoGSIFTEngine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of image-local-features Show documentation
Show all versions of image-local-features Show documentation
Methods for the extraction of local features. Local features
are descriptions of regions of images (SIFT, ...) selected by
detectors (Difference of Gaussian, Harris, ...).
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.feature.local.engine;
import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.citation.annotation.References;
import org.openimaj.feature.local.list.LocalFeatureList;
import org.openimaj.image.FImage;
import org.openimaj.image.analysis.pyramid.gaussian.GaussianOctave;
import org.openimaj.image.analysis.pyramid.gaussian.GaussianPyramid;
import org.openimaj.image.feature.local.descriptor.gradient.SIFTFeatureProvider;
import org.openimaj.image.feature.local.detector.dog.collector.Collector;
import org.openimaj.image.feature.local.detector.dog.collector.OctaveKeypointCollector;
import org.openimaj.image.feature.local.detector.dog.extractor.DominantOrientationExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.GradientFeatureExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.OrientationHistogramExtractor;
import org.openimaj.image.feature.local.detector.dog.pyramid.DoGOctaveExtremaFinder;
import org.openimaj.image.feature.local.detector.pyramid.BasicOctaveExtremaFinder;
import org.openimaj.image.feature.local.detector.pyramid.OctaveInterestPointFinder;
import org.openimaj.image.feature.local.keypoints.Keypoint;
/**
*
* An implementation of Lowe's SIFT: specifically both the
* difference-of-Gaussian detector coupled with a SIFT descriptor.
*
*
* This class and its sister options class {@link DoGSIFTEngineOptions} wrap all
* the work needed to extract SIFT features into a single place without having
* to deal with the setup of pyramid finders, collectors and providers.
*
*
* @author Jonathon Hare ([email protected])
*
*/
@References(references = {
@Reference(
type = ReferenceType.Article,
author = { "David Lowe" },
title = "Distinctive image features from scale-invariant keypoints",
year = "2004",
journal = "IJCV",
pages = { "91", "110" },
month = "January",
number = "2",
volume = "60"),
@Reference(
type = ReferenceType.Inproceedings,
author = { "David Lowe" },
title = "Object recognition from local scale-invariant features",
year = "1999",
booktitle = "Proc. of the International Conference on Computer Vision {ICCV}",
pages = { "1150", "1157" }
)
})
public class DoGSIFTEngine implements Engine {
DoGSIFTEngineOptions options;
/**
* Construct a DoGSIFTEngine with the default options.
*/
public DoGSIFTEngine() {
this(new DoGSIFTEngineOptions());
}
/**
* Construct a DoGSIFTEngine with the given options.
*
* @param options
* the options
*/
public DoGSIFTEngine(DoGSIFTEngineOptions options) {
this.options = options;
}
@Override
public LocalFeatureList findFeatures(FImage image) {
final OctaveInterestPointFinder, FImage> finder =
new DoGOctaveExtremaFinder(new BasicOctaveExtremaFinder(options.magnitudeThreshold,
options.eigenvalueRatio));
final Collector, Keypoint, FImage> collector = new OctaveKeypointCollector(
new GradientFeatureExtractor(
new DominantOrientationExtractor(
options.peakThreshold,
new OrientationHistogramExtractor(
options.numOriHistBins,
options.scaling,
options.smoothingIterations,
options.samplingSize
)
),
new SIFTFeatureProvider(
options.numOriBins,
options.numSpatialBins,
options.valueThreshold,
options.gaussianSigma
),
options.magnificationFactor * options.numSpatialBins
)
);
finder.setOctaveInterestPointListener(collector);
options.setOctaveProcessor(finder);
final GaussianPyramid pyr = new GaussianPyramid(options);
pyr.process(image);
return collector.getFeatures();
}
/**
* @return the current options used by the engine
*/
public DoGSIFTEngineOptions getOptions() {
return options;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy