
org.openimaj.image.feature.local.interest.EllipticInterestPointData Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of image-local-features Show documentation
Show all versions of image-local-features Show documentation
Methods for the extraction of local features. Local features
are descriptions of regions of images (SIFT, ...) selected by
detectors (Difference of Gaussian, Harris, ...).
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.feature.local.interest;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;
import org.openimaj.math.geometry.shape.Ellipse;
import org.openimaj.math.geometry.shape.EllipseUtilities;
import Jama.Matrix;
public class EllipticInterestPointData extends InterestPointData {
/**
*
*/
private static final long serialVersionUID = 3442580574124477236L;
public Matrix transform;
public void setTransform(Matrix transform) {
this.transform = transform;
}
@Override
public Matrix getTransform(){
Matrix m = new Matrix(3,3);
m.setMatrix(0, 1, 0,1,this.transform);
m.set(0, 2, 0);
m.set(1, 2, 0);
m.set(2, 2, 1);
return m;
}
@Override
public Ellipse getEllipse() {
return EllipseUtilities.fromTransformMatrix2x2(transform, x, y, scale);
}
@Override
public void writeBinary(DataOutput out) throws IOException {
super.writeBinary(out);
out.writeFloat((float) transform.get(0,0));
out.writeFloat((float) transform.get(0,1));
out.writeFloat((float) transform.get(1,0));
out.writeFloat((float) transform.get(1,1));
}
@Override
public void writeASCII(PrintWriter out) throws IOException {
super.writeASCII(out);
out.format(" %4.2f %4.2f %4.2f %4.2f", (float) transform.get(0,0),(float) transform.get(0,1),(float) transform.get(1,0),(float) transform.get(1,1));
}
@Override
public void readBinary(DataInput in) throws IOException {
super.readBinary(in);
this.transform = new Matrix(2,2);
this.transform.set(0, 0, in.readFloat());
this.transform.set(0, 1, in.readFloat());
this.transform.set(1, 0, in.readFloat());
this.transform.set(1, 1, in.readFloat());
this.setTransform(this.transform);
}
@Override
public void readASCII(Scanner in) throws IOException {
super.readASCII(in);
this.transform = new Matrix(2,2);
this.transform.set(0, 0, in.nextFloat());
this.transform.set(0, 1, in.nextFloat());
this.transform.set(1, 0, in.nextFloat());
this.transform.set(1, 1, in.nextFloat());
this.setTransform(this.transform);
}
@Override
public EllipticInterestPointData clone() {
EllipticInterestPointData d = (EllipticInterestPointData) super.clone();
d.transform = this.transform.copy();
return d;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy