
org.openimaj.image.feature.local.interest.QuadratureIPD Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of image-local-features Show documentation
Show all versions of image-local-features Show documentation
Methods for the extraction of local features. Local features
are descriptions of regions of images (SIFT, ...) selected by
detectors (Difference of Gaussian, Harris, ...).
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.feature.local.interest;
import org.openimaj.image.FImage;
import org.openimaj.image.processing.convolution.FImageConvolveSeparable;
import org.openimaj.image.processor.PixelProcessor;
public class QuadratureIPD extends AbstractStructureTensorIPD {
public QuadratureIPD(float detectionScale, float integrationScale) {
super(detectionScale, integrationScale);
}
@Override
public FImage createInterestPointMap() {
float s2 = detectionScale * detectionScale;
int filtsize = (int) Math.max(3,Math.round(5*detectionScale));
float [] g = new float[2*filtsize + 1];
float [] f1 = new float[2*filtsize + 1];
float [] f2 = new float[2*filtsize + 1];
float [] mf2 = new float[2*filtsize + 1];
float [] f3 = new float[2*filtsize + 1];
float [] mf3 = new float[2*filtsize + 1];
float [] f4 = new float[2*filtsize + 1];
for (int i=0, t=-filtsize; t<=filtsize; t++, i++) {
g[i] = (float) (Math.exp(-(t*t)/(2*s2))/Math.sqrt(2*Math.PI*s2));
f1[i] = g[i] * ((t*t)/s2-1)/s2;
f2[i] = g[i] * t/s2;
mf2[i] = -f2[i];
f3[i] = (float) (g[i] * (3.0-2.0/3.0*t*t/s2)*t/Math.sqrt(Math.PI)/Math.sqrt(s2)/s2);
mf3[i] = f3[i];
f4[i] = (float) (g[i] * (1.0-2.0/3.0*t*t/s2)/Math.sqrt(Math.PI)/Math.sqrt(s2));
}
FImage e1 = this.originalImage.process(new FImageConvolveSeparable(f3, g));
FImage e2 = this.originalImage.process(new FImageConvolveSeparable(f4, mf2));
FImage e3 = this.originalImage.process(new FImageConvolveSeparable(f2, f4));
FImage e4 = this.originalImage.process(new FImageConvolveSeparable(g, mf3));
FImage gx = e1.addInplace(e3).multiplyInplace(0.75f);
FImage gy = e2.addInplace(e4).multiplyInplace(0.75f);
FImage hxx = this.originalImage.process(new FImageConvolveSeparable(f1, g));
FImage hxy = this.originalImage.process(new FImageConvolveSeparable(f2, mf2));
FImage hyy = this.originalImage.process(new FImageConvolveSeparable(g, f1));
FImage b11 = gx.multiply(gx).add(hxx.multiplyInplace(hxx));
FImage b12 = gx.multiply(gy).add(hxy.multiplyInplace(hxy));
FImage b22 = gy.multiply(gy).add(hyy.multiplyInplace(hyy));
FImage ebound = b11.add(b22);
FImage b11b22 = b11.subtractInplace(b22);
FImage eedge = b11b22.multiplyInplace(b11b22).add(b12.multiplyInplace(b12).multiplyInplace(4f)).processInplace(new PixelProcessor() {
@Override
public Float processPixel(Float pixel) {
return (float) Math.sqrt(pixel);
}});
FImage cimg = ebound.subtractInplace(eedge).processInplace(new PixelProcessor() {
@Override
public Float processPixel(Float pixel) {
return -pixel;
}});
return cimg;
}
@Override
public QuadratureIPD clone() {
return (QuadratureIPD) super.clone();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy