org.openimaj.image.feature.local.engine.BasicGridSIFTEngine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of image-local-features Show documentation
Show all versions of image-local-features Show documentation
Methods for the extraction of local features. Local features
are descriptions of regions of images (SIFT, ...) selected by
detectors (Difference of Gaussian, Harris, ...).
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.feature.local.engine;
import org.openimaj.feature.local.list.LocalFeatureList;
import org.openimaj.image.FImage;
import org.openimaj.image.analysis.pyramid.gaussian.GaussianOctave;
import org.openimaj.image.analysis.pyramid.gaussian.GaussianPyramid;
import org.openimaj.image.feature.local.descriptor.gradient.SIFTFeatureProvider;
import org.openimaj.image.feature.local.detector.dog.collector.Collector;
import org.openimaj.image.feature.local.detector.dog.collector.OctaveKeypointCollector;
import org.openimaj.image.feature.local.detector.dog.extractor.AbstractDominantOrientationExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.DominantOrientationExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.GradientFeatureExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.NullOrientationExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.OrientationHistogramExtractor;
import org.openimaj.image.feature.local.detector.pyramid.BasicOctaveGridFinder;
import org.openimaj.image.feature.local.detector.pyramid.OctaveInterestPointFinder;
import org.openimaj.image.feature.local.keypoints.Keypoint;
/**
* Really basic SIFT extraction on a regular grid of interest points. This is
* basically a naive implementation of dense sift. Features can either be
* oriented or upright.
*
* @author Jonathon Hare ([email protected])
*
*/
public class BasicGridSIFTEngine implements Engine {
boolean orientate;
DoGSIFTEngineOptions options;
/**
* Default constructor.
*
* @param orientate
* if true oriented features will be produced; false means
* upright features.
*/
public BasicGridSIFTEngine(boolean orientate) {
this.options = new DoGSIFTEngineOptions();
this.orientate = orientate;
}
/**
* Construct with the given parameters.
*
* @param orientate
* if true oriented features will be produced; false means
* upright features.
* @param options
* options for the SIFT extraction
*/
public BasicGridSIFTEngine(boolean orientate, DoGSIFTEngineOptions options) {
this.orientate = orientate;
this.options = options;
}
@Override
public LocalFeatureList findFeatures(FImage image) {
final OctaveInterestPointFinder, FImage> finder = new BasicOctaveGridFinder, FImage>();
final AbstractDominantOrientationExtractor ori = orientate ?
new DominantOrientationExtractor(
options.peakThreshold,
new OrientationHistogramExtractor(
options.numOriHistBins,
options.scaling,
options.smoothingIterations,
options.samplingSize
)
)
: new NullOrientationExtractor();
final Collector, Keypoint, FImage> collector = new OctaveKeypointCollector(
new GradientFeatureExtractor(
ori,
new SIFTFeatureProvider(
options.numOriBins,
options.numSpatialBins,
options.valueThreshold,
options.gaussianSigma
),
options.magnificationFactor * options.numSpatialBins
)
);
finder.setOctaveInterestPointListener(collector);
options.setOctaveProcessor(finder);
final GaussianPyramid pyr = new GaussianPyramid(options);
pyr.process(image);
return collector.getFeatures();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy