All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.image.feature.local.engine.MinMaxDoGSIFTEngine Maven / Gradle / Ivy

Go to download

Methods for the extraction of local features. Local features are descriptions of regions of images (SIFT, ...) selected by detectors (Difference of Gaussian, Harris, ...).

There is a newer version: 1.3.10
Show newest version
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.openimaj.image.feature.local.engine;

import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.feature.local.list.LocalFeatureList;
import org.openimaj.image.FImage;
import org.openimaj.image.analysis.pyramid.gaussian.GaussianOctave;
import org.openimaj.image.analysis.pyramid.gaussian.GaussianPyramid;
import org.openimaj.image.feature.local.descriptor.gradient.SIFTFeatureProvider;
import org.openimaj.image.feature.local.detector.dog.collector.Collector;
import org.openimaj.image.feature.local.detector.dog.collector.OctaveKeypointCollector;
import org.openimaj.image.feature.local.detector.dog.collector.OctaveMinMaxKeypointCollector;
import org.openimaj.image.feature.local.detector.dog.extractor.DominantOrientationExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.GradientFeatureExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.OrientationHistogramExtractor;
import org.openimaj.image.feature.local.detector.dog.pyramid.DoGOctaveExtremaFinder;
import org.openimaj.image.feature.local.detector.pyramid.BasicOctaveExtremaFinder;
import org.openimaj.image.feature.local.detector.pyramid.OctaveInterestPointFinder;
import org.openimaj.image.feature.local.keypoints.MinMaxKeypoint;

/**
 * A modified implementation of Lowe's difference-of-Gaussian detector and SIFT
 * feature extraction technique that also records whether features are detected
 * at local minima or maxima by looking at the sign of the difference of
 * Gaussian. This information can then be used for enhancing matching or
 * clustering.
 * 

* Internally, this class is identical to {@link DoGSIFTEngine}, but uses a * {@link OctaveMinMaxKeypointCollector} instead of an * {@link OctaveKeypointCollector}. * * @author Jonathon Hare ([email protected]) */ @Reference( type = ReferenceType.Inproceedings, author = { "Jonathon Hare", "Sina Samangooei", "Paul Lewis" }, title = "Efficient clustering and quantisation of SIFT features: Exploiting characteristics of the SIFT descriptor and interest region detectors under image inversion", year = "2011", booktitle = "The ACM International Conference on Multimedia Retrieval (ICMR 2011)", month = "April", publisher = "ACM Press") public class MinMaxDoGSIFTEngine implements Engine { DoGSIFTEngineOptions options; /** * Construct a {@link MinMaxDoGSIFTEngine} with the default options. */ public MinMaxDoGSIFTEngine() { this(new DoGSIFTEngineOptions()); } /** * Construct a {@link MinMaxDoGSIFTEngine} with the given options. * * @param options * the options */ public MinMaxDoGSIFTEngine(DoGSIFTEngineOptions options) { this.options = options; } @Override public LocalFeatureList findFeatures(FImage image) { final OctaveInterestPointFinder, FImage> finder = new DoGOctaveExtremaFinder(new BasicOctaveExtremaFinder(options.magnitudeThreshold, options.eigenvalueRatio)); final Collector, MinMaxKeypoint, FImage> collector = new OctaveMinMaxKeypointCollector( new GradientFeatureExtractor( new DominantOrientationExtractor(options.peakThreshold, new OrientationHistogramExtractor(options.numOriHistBins, options.scaling, options.smoothingIterations, options.samplingSize)), new SIFTFeatureProvider(options.numOriBins, options.numSpatialBins, options.valueThreshold, options.gaussianSigma), options.magnificationFactor * options.numSpatialBins )); finder.setOctaveInterestPointListener(collector); options.setOctaveProcessor(finder); final GaussianPyramid pyr = new GaussianPyramid(options); pyr.process(image); return collector.getFeatures(); } /** * Get the options for this engine. * * @return the options for this engine */ public DoGSIFTEngineOptions getOptions() { return options; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy