
org.openimaj.image.feature.local.engine.MinMaxDoGSIFTEngine Maven / Gradle / Ivy
Show all versions of image-local-features Show documentation
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.feature.local.engine;
import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.feature.local.list.LocalFeatureList;
import org.openimaj.image.FImage;
import org.openimaj.image.analysis.pyramid.gaussian.GaussianOctave;
import org.openimaj.image.analysis.pyramid.gaussian.GaussianPyramid;
import org.openimaj.image.feature.local.descriptor.gradient.SIFTFeatureProvider;
import org.openimaj.image.feature.local.detector.dog.collector.Collector;
import org.openimaj.image.feature.local.detector.dog.collector.OctaveKeypointCollector;
import org.openimaj.image.feature.local.detector.dog.collector.OctaveMinMaxKeypointCollector;
import org.openimaj.image.feature.local.detector.dog.extractor.DominantOrientationExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.GradientFeatureExtractor;
import org.openimaj.image.feature.local.detector.dog.extractor.OrientationHistogramExtractor;
import org.openimaj.image.feature.local.detector.dog.pyramid.DoGOctaveExtremaFinder;
import org.openimaj.image.feature.local.detector.pyramid.BasicOctaveExtremaFinder;
import org.openimaj.image.feature.local.detector.pyramid.OctaveInterestPointFinder;
import org.openimaj.image.feature.local.keypoints.MinMaxKeypoint;
/**
* A modified implementation of Lowe's difference-of-Gaussian detector and SIFT
* feature extraction technique that also records whether features are detected
* at local minima or maxima by looking at the sign of the difference of
* Gaussian. This information can then be used for enhancing matching or
* clustering.
*
* Internally, this class is identical to {@link DoGSIFTEngine}, but uses a
* {@link OctaveMinMaxKeypointCollector} instead of an
* {@link OctaveKeypointCollector}.
*
* @author Jonathon Hare ([email protected])
*/
@Reference(
type = ReferenceType.Inproceedings,
author = { "Jonathon Hare", "Sina Samangooei", "Paul Lewis" },
title = "Efficient clustering and quantisation of SIFT features: Exploiting characteristics of the SIFT descriptor and interest region detectors under image inversion",
year = "2011",
booktitle = "The ACM International Conference on Multimedia Retrieval (ICMR 2011)",
month = "April",
publisher = "ACM Press")
public class MinMaxDoGSIFTEngine implements Engine {
DoGSIFTEngineOptions options;
/**
* Construct a {@link MinMaxDoGSIFTEngine} with the default options.
*/
public MinMaxDoGSIFTEngine() {
this(new DoGSIFTEngineOptions());
}
/**
* Construct a {@link MinMaxDoGSIFTEngine} with the given options.
*
* @param options
* the options
*/
public MinMaxDoGSIFTEngine(DoGSIFTEngineOptions options) {
this.options = options;
}
@Override
public LocalFeatureList findFeatures(FImage image) {
final OctaveInterestPointFinder, FImage> finder =
new DoGOctaveExtremaFinder(new BasicOctaveExtremaFinder(options.magnitudeThreshold,
options.eigenvalueRatio));
final Collector, MinMaxKeypoint, FImage> collector = new OctaveMinMaxKeypointCollector(
new GradientFeatureExtractor(
new DominantOrientationExtractor(options.peakThreshold,
new OrientationHistogramExtractor(options.numOriHistBins, options.scaling,
options.smoothingIterations, options.samplingSize)),
new SIFTFeatureProvider(options.numOriBins, options.numSpatialBins, options.valueThreshold,
options.gaussianSigma),
options.magnificationFactor * options.numSpatialBins
));
finder.setOctaveInterestPointListener(collector);
options.setOctaveProcessor(finder);
final GaussianPyramid pyr = new GaussianPyramid(options);
pyr.process(image);
return collector.getFeatures();
}
/**
* Get the options for this engine.
*
* @return the options for this engine
*/
public DoGSIFTEngineOptions getOptions() {
return options;
}
}