Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.processing.convolution;
import org.openimaj.image.FImage;
import org.openimaj.image.processing.algorithm.FourierTransform;
import org.openimaj.image.processor.SinglebandImageProcessor;
import edu.emory.mathcs.jtransforms.fft.FloatFFT_2D;
/**
* {@link FImage} convolution performed in the fourier domain.
*
* @author Jonathon Hare ([email protected])
*
*/
public class FourierConvolve implements SinglebandImageProcessor {
private float[][] kernel;
/**
* Construct the convolution operator with the given kernel
*
* @param kernel
* the kernel
*/
public FourierConvolve(float[][] kernel) {
this.kernel = kernel;
}
/**
* Construct the convolution operator with the given kernel
*
* @param kernel
* the kernel
*/
public FourierConvolve(FImage kernel) {
this.kernel = kernel.pixels;
}
@Override
public void processImage(FImage image) {
convolve(image, kernel, true);
}
/**
* Convolve an image with a kernel using an FFT.
*
* @param image
* The image to convolve
* @param kernel
* The kernel
* @param inplace
* if true, then output overwrites the input, otherwise a new image
* is created.
* @return convolved image
*/
public static FImage convolve(FImage image, float[][] kernel, boolean inplace) {
final int cols = image.getCols();
final int rows = image.getRows();
final FloatFFT_2D fft = new FloatFFT_2D(rows, cols);
final float[][] preparedImage = FourierTransform.prepareData(image.pixels, rows, cols, false);
fft.complexForward(preparedImage);
final float[][] preparedKernel = FourierTransform.prepareData(kernel, rows, cols, false);
fft.complexForward(preparedKernel);
for (int y = 0; y < rows; y++) {
for (int x = 0; x < cols; x++) {
final float reImage = preparedImage[y][x * 2];
final float imImage = preparedImage[y][1 + x * 2];
final float reKernel = preparedKernel[y][x * 2];
final float imKernel = preparedKernel[y][1 + x * 2];
final float re = reImage * reKernel - imImage * imKernel;
final float im = reImage * imKernel + imImage * reKernel;
preparedImage[y][x * 2] = re;
preparedImage[y][1 + x * 2] = im;
}
}
fft.complexInverse(preparedImage, true);
FImage out = image;
if (!inplace)
out = new FImage(cols, rows);
FourierTransform.unprepareData(preparedImage, out, false);
return out;
}
/**
* Convolve an image with a pre-prepared frequency domain filter. The filter
* must have the same height as the image and twice the width (to account for
* the imaginary components). Real and imaginary components should be interlaced
* across the rows.
*
* @param image
* The image to convolve
* @param filter
* the prepared frequency domain filter
* @param centered
* true if the prepared filter has the highest frequency in the
* centre.
* @return convolved image
*/
public static FImage convolvePrepared(FImage image, FImage filter, boolean centered) {
final int cols = image.getCols();
final int rows = image.getRows();
final FloatFFT_2D fft = new FloatFFT_2D(rows, cols);
final float[][] preparedImage = FourierTransform.prepareData(image.pixels, rows, cols, centered);
fft.complexForward(preparedImage);
final float[][] preparedKernel = filter.pixels;
for (int y = 0; y < rows; y++) {
for (int x = 0; x < cols; x++) {
final float reImage = preparedImage[y][x * 2];
final float imImage = preparedImage[y][1 + x * 2];
final float reKernel = preparedKernel[y][x * 2];
final float imKernel = preparedKernel[y][1 + x * 2];
final float re = reImage * reKernel - imImage * imKernel;
final float im = reImage * imKernel + imImage * reKernel;
preparedImage[y][x * 2] = re;
preparedImage[y][1 + x * 2] = im;
}
}
fft.complexInverse(preparedImage, true);
final FImage out = new FImage(cols, rows);
FourierTransform.unprepareData(preparedImage, out, centered);
return out;
}
}