org.openimaj.image.processing.convolution.FGaussianConvolve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of image-processing Show documentation
Show all versions of image-processing Show documentation
Implementations of various image, pixel and connected component processors (resizing, convolution, edge detection, ...).
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.processing.convolution;
import org.openimaj.image.FImage;
import org.openimaj.image.processor.SinglebandImageProcessor;
/**
* Image processor for FImage capable of performing convolutions with Gaussians.
*
* @author Jonathon Hare ([email protected])
*/
public class FGaussianConvolve implements SinglebandImageProcessor {
/**
* The default number of sigmas at which the Gaussian function is truncated
* when building a kernel
*/
public static final float DEFAULT_GAUSS_TRUNCATE = 4.0f;
protected float[] kernel;
/**
* Construct an {@link FGaussianConvolve} with a Gaussian of standard
* deviation sigma.
*
* @param sigma
* Gaussian kernel standard deviation
*/
public FGaussianConvolve(float sigma) {
this(sigma, DEFAULT_GAUSS_TRUNCATE);
}
/**
* Construct an {@link FGaussianConvolve} with a Gaussian of standard
* deviation sigma. The truncate parameter defines how many sigmas wide the
* kernel is.
*
* @param sigma
* @param truncate
*/
public FGaussianConvolve(float sigma, float truncate) {
kernel = makeKernel(sigma, truncate);
}
/**
* Construct a zero-mean Gaussian with the specified standard deviation.
*
* @param sigma
* the standard deviation of the Gaussian
* @return an array representing a Gaussian function
*/
public static float[] makeKernel(float sigma) {
return makeKernel(sigma, DEFAULT_GAUSS_TRUNCATE);
}
/**
* Construct a zero-mean Gaussian with the specified standard deviation.
*
* @param sigma
* the standard deviation of the Gaussian
* @param truncate
* the number of sigmas from the centre at which to truncate the
* Gaussian
* @return an array representing a Gaussian function
*/
public static float[] makeKernel(float sigma, float truncate) {
if (sigma == 0)
return new float[] { 1f };
// The kernel is truncated at truncate sigmas from center.
int ksize = (int) (2.0f * truncate * sigma + 1.0f);
// ksize = Math.max(1, ksize); // size must be at least 3
if (ksize % 2 == 0)
ksize++; // size must be odd
final float[] kernel = new float[ksize];
// build kernel
float sum = 0.0f;
for (int i = 0; i < ksize; i++) {
final float x = i - ksize / 2;
kernel[i] = (float) Math.exp(-x * x / (2.0 * sigma * sigma));
sum += kernel[i];
}
// normalise area to 1
for (int i = 0; i < ksize; i++) {
kernel[i] /= sum;
}
return kernel;
}
/*
* (non-Javadoc)
*
* @see
* org.openimaj.image.processor.ImageProcessor#processImage(org.openimaj
* .image.Image)
*/
@Override
public void processImage(FImage image) {
FImageConvolveSeparable.convolveHorizontal(image, kernel);
FImageConvolveSeparable.convolveVertical(image, kernel);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy