Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.processing.transform;
import java.util.ArrayList;
import java.util.List;
import org.openimaj.image.Image;
import org.openimaj.image.pixel.Pixel;
import org.openimaj.image.processor.ImageProcessor;
import org.openimaj.image.renderer.ScanRasteriser;
import org.openimaj.image.renderer.ScanRasteriser.ScanLineListener;
import org.openimaj.math.geometry.point.Point2d;
import org.openimaj.math.geometry.shape.Polygon;
import org.openimaj.math.geometry.shape.Rectangle;
import org.openimaj.math.geometry.shape.Shape;
import org.openimaj.math.geometry.transforms.TransformUtilities;
import org.openimaj.util.pair.Pair;
import Jama.Matrix;
/**
* Implementation of a piecewise warp. The warp can be piecewise affine,
* piecewise homographic or a mixture of the two. Basically this means you can
* warp images represented by triangles, quads or a mixture of the two.
*
* @author Jonathon Hare ([email protected])
*
* @param
* the pixel type
* @param
* the actual image of the concrete subclass
*/
public class PiecewiseMeshWarp> implements ImageProcessor {
List> matchingRegions;
List transforms = new ArrayList();
Rectangle bounds;
/**
* Construct the warp with a list of matching shapes (which must be either
* quads or triangles). The pairs map from the measured/observed space to
* the canonical space.
*
* @param matchingRegions
* the matching shapes
*/
public PiecewiseMeshWarp(List> matchingRegions) {
this.matchingRegions = matchingRegions;
initTransforms();
}
protected final Matrix getTransform(Point2d p) {
final int sz = matchingRegions.size();
for (int i = 0; i < sz; i++) {
if (matchingRegions.get(i).secondObject().isInside(p)) {
return transforms.get(i);
}
}
return null;
}
/**
* Get the shape in the observation space for a point in the canonical
* space.
*
* @param p
* point in the canonical space.
* @return the matching shape in observed space
*/
public Shape getMatchingShape(Point2d p) {
for (int i = 0; i < matchingRegions.size(); i++) {
final Pair matching = matchingRegions.get(i);
if (matching.secondObject().isInside(p)) {
return matching.firstObject();
}
}
return null;
}
/**
* Get the shape pair index for a point in the canonical space.
*
* @param p
* the point in canonical space.
* @return the index of the matching point pair
*/
public int getMatchingShapeIndex(Point2d p) {
for (int i = 0; i < matchingRegions.size(); i++) {
final Pair matching = matchingRegions.get(i);
if (matching.secondObject().isInside(p)) {
return i;
}
}
return -1;
}
protected void initTransforms() {
bounds = new Rectangle(Float.MAX_VALUE, Float.MAX_VALUE, 0, 0);
for (final Pair shape : matchingRegions) {
final Polygon p1 = shape.firstObject().asPolygon();
final Polygon p2 = shape.secondObject().asPolygon();
bounds.x = (float) Math.min(bounds.x, p2.minX());
bounds.y = (float) Math.min(bounds.y, p2.minY());
bounds.width = (float) Math.max(bounds.width, p2.maxX());
bounds.height = (float) Math.max(bounds.height, p2.maxY());
if (p1.nVertices() == 3) {
transforms.add(getTransform3(polyMatchToPointsMatch(p2, p1)));
} else if (p1.nVertices() == 4) {
transforms.add(getTransform4(polyMatchToPointsMatch(p2, p1)));
} else {
throw new RuntimeException("Only polygons with 3 or 4 vertices are supported!");
}
}
bounds.width -= bounds.x;
bounds.height -= bounds.y;
}
protected List> polyMatchToPointsMatch(Polygon pa, Polygon pb) {
final List> pts = new ArrayList>();
for (int i = 0; i < pa.nVertices(); i++) {
final Point2d pta = pa.getVertices().get(i);
final Point2d ptb = pb.getVertices().get(i);
pts.add(new Pair(pta, ptb));
}
return pts;
}
protected Matrix getTransform4(List> pts) {
return TransformUtilities.homographyMatrixNorm(pts);
}
protected Matrix getTransform3(List> pts) {
return TransformUtilities.affineMatrix(pts);
}
@Override
public void processImage(final I image) {
final int width = image.getWidth();
final int height = image.getHeight();
final I ret = image.newInstance(width, height);
final Scan scan = new Scan(width, height, image, ret);
for (int i = 0; i < matchingRegions.size(); i++) {
final Polygon from = matchingRegions.get(i).secondObject().asPolygon();
scan.tf = transforms.get(i);
ScanRasteriser.scanFill(from.points, scan);
}
image.internalAssign(ret);
}
/**
* Transform the content of the input image into an output image of the
* given dimensions.
*
* @param image
* the input image
* @param width
* the output width
* @param height
* the output height
* @return the output image
*/
public I transform(final I image, int width, int height) {
final I ret = image.newInstance(width, height);
final Scan scan = new Scan(width, height, image, ret);
for (int i = 0; i < matchingRegions.size(); i++) {
final Polygon from = matchingRegions.get(i).secondObject().asPolygon();
scan.tf = transforms.get(i);
ScanRasteriser.scanFill(from.points, scan);
}
return ret;
}
private class Scan implements ScanLineListener {
private final Pixel p = new Pixel();
private final int xmin = (int) Math.max(0, bounds.x);
private final int ymin = (int) Math.max(0, bounds.y);
private final int xmax;
private final int ymax;
private final I image;
private final I ret;
Matrix tf;
Scan(int width, int height, I image, I ret) {
xmax = (int) Math.min(width, bounds.x + bounds.width);
ymax = (int) Math.min(height, bounds.y + bounds.height);
this.image = image;
this.ret = ret;
}
@Override
public void process(int x1, int x2, int y) {
if (y < ymin || y > ymax)
return;
final int startx = Math.max(xmin, Math.min(x1, x2));
final int stopx = Math.min(xmax, Math.max(x1, x2));
for (int x = startx; x <= stopx; x++) {
p.x = x;
p.y = y;
p.transformInplace(tf);
ret.setPixel(x, y, image.getPixelInterp(p.x, p.y));
}
}
}
}