All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.knn.pq.IncrementalIntADCNearestNeighbours Maven / Gradle / Ivy

/*
	AUTOMATICALLY GENERATED BY jTemp FROM
	/Users/jsh2/Work/openimaj/target/checkout/machine-learning/nearest-neighbour/src/main/jtemp/org/openimaj/knn/pq/Incremental#T#ADCNearestNeighbours.jtemp
*/
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
 
 package org.openimaj.knn.pq;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.data.DataSource;
import org.openimaj.io.IOUtils;
import org.openimaj.io.ReadWriteableBinary;
import org.openimaj.knn.IntNearestNeighbours;
import org.openimaj.knn.IncrementalNearestNeighbours;
import org.openimaj.util.pair.IntFloatPair;
import org.openimaj.util.queue.BoundedPriorityQueue;

/**
 * Incremental Nearest-neighbours using Asymmetric Distance Computation (ADC) 
 * on Product Quantised vectors. In ADC, only the database points are quantised.
 * The queries themselves are not quantised. The overall distance is computed
 * as the summed distance of each subvector of the query to each corresponding
 * centroids of each database vector.
 * 

* For efficiency, the distance of each sub-vector of a query is computed to * every centroid (for the sub-vector under consideration) only once, and is * then cached for the lookup during the computation of the distance to each * database vector. * * @author Jonathon Hare ([email protected]) */ @Reference( type = ReferenceType.Article, author = { "Jegou, Herve", "Douze, Matthijs", "Schmid, Cordelia" }, title = "Product Quantization for Nearest Neighbor Search", year = "2011", journal = "IEEE Trans. Pattern Anal. Mach. Intell.", pages = { "117", "", "128" }, url = "http://dx.doi.org/10.1109/TPAMI.2010.57", month = "January", number = "1", publisher = "IEEE Computer Society", volume = "33", customData = { "issn", "0162-8828", "numpages", "12", "doi", "10.1109/TPAMI.2010.57", "acmid", "1916695", "address", "Washington, DC, USA", "keywords", "High-dimensional indexing, High-dimensional indexing, image indexing, very large databases, approximate search., approximate search., image indexing, very large databases" }) public class IncrementalIntADCNearestNeighbours extends IntNearestNeighbours implements IncrementalNearestNeighbours, ReadWriteableBinary { protected IntProductQuantiser pq; protected int ndims; protected List data; protected IncrementalIntADCNearestNeighbours() { //for deserialization } /** * Construct the ADC with the given quantiser and data points. * * @param pq * the Product Quantiser * @param dataPoints * the data points to index */ public IncrementalIntADCNearestNeighbours(IntProductQuantiser pq, int[][] dataPoints) { this.pq = pq; this.ndims = dataPoints[0].length; this.data = new ArrayList(dataPoints.length); for (int i = 0; i < dataPoints.length; i++) { data.add(pq.quantise(dataPoints[i])); } } /** * Construct the ADC with the given quantiser and data points. * * @param pq * the Product Quantiser * @param dataPoints * the data points to index */ public IncrementalIntADCNearestNeighbours(IntProductQuantiser pq, List dataPoints) { this.pq = pq; this.ndims = dataPoints.get(0).length; final int size = dataPoints.size(); this.data = new ArrayList(size); for (int i = 0; i < size; i++) { data.add(pq.quantise(dataPoints.get(i))); } } /** * Construct the ADC with the given quantiser and data points. * * @param pq * the Product Quantiser * @param dataPoints * the data points to index */ public IncrementalIntADCNearestNeighbours(IntProductQuantiser pq, DataSource dataPoints) { this.pq = pq; this.ndims = dataPoints.getData(0).length; final int size = dataPoints.size(); this.data = new ArrayList(size); for (int i = 0; i < size; i++) { data.add(pq.quantise(dataPoints.getData(i))); } } /** * Construct an empty ADC with the given quantiser. * * @param pq * the Product Quantiser * @param ndims * the data dimensionality */ public IncrementalIntADCNearestNeighbours(IntProductQuantiser pq, int ndims) { this.pq = pq; this.ndims = ndims; this.data = new ArrayList(); } /** * Construct an empty ADC with the given quantiser. * * @param pq * the Product Quantiser * @param ndims * the data dimensionality * @param nitems * the expected number of data items */ public IncrementalIntADCNearestNeighbours(IntProductQuantiser pq, int ndims, int nitems) { this.pq = pq; this.ndims = ndims; this.data = new ArrayList(nitems); } @Override public int[] addAll(List d) { final int[] indexes = new int[d.size()]; for (int i = 0; i < indexes.length; i++) { indexes[i] = add(d.get(i)); } return indexes; } @Override public int add(int[] o) { final int ret = data.size(); data.add(pq.quantise(o)); return ret; } @Override public int numDimensions() { return ndims; } @Override public int size() { return data.size(); } @Override public void readBinary(DataInput in) throws IOException { pq = IOUtils.read(in); ndims = in.readInt(); int size = in.readInt(); int dim = pq.assigners.length; data = new ArrayList(size); for (int i=0; i queue = new BoundedPriorityQueue(1, IntFloatPair.SECOND_ITEM_ASCENDING_COMPARATOR); //prepare working data List list = new ArrayList(2); list.add(new IntFloatPair()); list.add(new IntFloatPair()); for (int n=0; n < N; ++n) { List result = search(qus[n], queue, list); final IntFloatPair p = result.get(0); indices[n] = p.first; distances[n] = p.second; } } @Override public void searchKNN(final int [][] qus, int K, int [][] indices, float [][] distances) { // Fix for when the user asks for too many points. K = Math.min(K, data.size()); final int N = qus.length; final BoundedPriorityQueue queue = new BoundedPriorityQueue(K, IntFloatPair.SECOND_ITEM_ASCENDING_COMPARATOR); //prepare working data List list = new ArrayList(K + 1); for (int i = 0; i < K + 1; i++) { list.add(new IntFloatPair()); } // search on each query for (int n = 0; n < N; ++n) { List result = search(qus[n], queue, list); for (int k = 0; k < K; ++k) { final IntFloatPair p = result.get(k); indices[n][k] = p.first; distances[n][k] = p.second; } } } @Override public void searchNN(final List qus, int [] indices, float [] distances) { final int N = qus.size(); final BoundedPriorityQueue queue = new BoundedPriorityQueue(1, IntFloatPair.SECOND_ITEM_ASCENDING_COMPARATOR); //prepare working data List list = new ArrayList(2); list.add(new IntFloatPair()); list.add(new IntFloatPair()); for (int n=0; n < N; ++n) { List result = search(qus.get(n), queue, list); final IntFloatPair p = result.get(0); indices[n] = p.first; distances[n] = p.second; } } @Override public void searchKNN(final List qus, int K, int [][] indices, float [][] distances) { // Fix for when the user asks for too many points. K = Math.min(K, data.size()); final int N = qus.size(); final BoundedPriorityQueue queue = new BoundedPriorityQueue(K, IntFloatPair.SECOND_ITEM_ASCENDING_COMPARATOR); //prepare working data List list = new ArrayList(K + 1); for (int i = 0; i < K + 1; i++) { list.add(new IntFloatPair()); } // search on each query for (int n = 0; n < N; ++n) { List result = search(qus.get(n), queue, list); for (int k = 0; k < K; ++k) { final IntFloatPair p = result.get(k); indices[n][k] = p.first; distances[n][k] = p.second; } } } @Override public List searchKNN(int[] query, int K) { // Fix for when the user asks for too many points. K = Math.min(K, data.size()); final BoundedPriorityQueue queue = new BoundedPriorityQueue(K, IntFloatPair.SECOND_ITEM_ASCENDING_COMPARATOR); //prepare working data List list = new ArrayList(K + 1); for (int i = 0; i < K + 1; i++) { list.add(new IntFloatPair()); } // search return search(query, queue, list); } @Override public IntFloatPair searchNN(final int[] query) { final BoundedPriorityQueue queue = new BoundedPriorityQueue(1, IntFloatPair.SECOND_ITEM_ASCENDING_COMPARATOR); //prepare working data List list = new ArrayList(2); list.add(new IntFloatPair()); list.add(new IntFloatPair()); return search(query, queue, list).get(0); } private List search(int[] query, BoundedPriorityQueue queue, List results) { IntFloatPair wp = null; // reset all values in the queue to MAX, -1 for (final IntFloatPair p : results) { p.second = Float.MAX_VALUE; p.first = -1; wp = queue.offerItem(p); } // perform the search computeDistances(query, queue, wp); return queue.toOrderedListDestructive(); } protected void computeDistances(int[] fullQuery, BoundedPriorityQueue queue, IntFloatPair wp) { final float[][] distances = new float[pq.assigners.length][]; for (int j = 0, from = 0; j < this.pq.assigners.length; j++) { final IntNearestNeighbours nn = this.pq.assigners[j]; final int to = nn.numDimensions(); final int K = nn.size(); final int[][] qus = { Arrays.copyOfRange(fullQuery, from, from + to) }; final int[][] idx = new int[1][K]; final float[][] dst = new float[1][K]; nn.searchKNN(qus, K, idx, dst); distances[j] = new float[K]; for (int k = 0; k < K; k++) { distances[j][idx[0][k]] = dst[0][k]; } from += to; } final int size = data.size(); for (int i = 0; i < size; i++) { wp.first = i; wp.second = 0; for (int j = 0; j < this.pq.assigners.length; j++) { final int centroid = this.data.get(i)[j] + 128; wp.second += distances[j][centroid]; } wp = queue.offerItem(wp); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy