Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.image.objectdetection.datasets;
import java.util.AbstractList;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import org.apache.commons.vfs2.FileSystemException;
import org.openimaj.data.DataUtils;
import org.openimaj.data.dataset.GroupedDataset;
import org.openimaj.data.dataset.ListBackedDataset;
import org.openimaj.data.dataset.ListDataset;
import org.openimaj.data.dataset.MapBackedDataset;
import org.openimaj.data.dataset.VFSListDataset;
import org.openimaj.experiment.annotations.DatasetDescription;
import org.openimaj.image.FImage;
import org.openimaj.image.Image;
import org.openimaj.image.ImageUtilities;
import org.openimaj.io.InputStreamObjectReader;
import org.openimaj.math.geometry.shape.Rectangle;
@DatasetDescription(
name = "INRIAPerson",
description = "Images of upright people in images and video. " +
"The dataset is divided in two formats: (a) original " +
"images with corresponding annotation files, and " +
"(b) positive images in normalized 64x128 pixel format " +
"(as used in the CVPR paper) with original negative images",
creator = "Navneet Dalal",
url = "http://pascal.inrialpes.fr/data/human/",
downloadUrls = {
"http://datasets.openimaj.org/INRIAPerson.zip",
})
public class INRIAPersonDataset {
static class NegEx {
int id;
Rectangle r;
}
public static > ListDataset getNegativeTrainingImages(
InputStreamObjectReader reader) throws FileSystemException
{
final VFSListDataset images = new VFSListDataset(DataUtils.getDataLocation(
"INRIAPerson/train_64x128_H96/neg")
.toString(), reader);
return images;
}
public static > ListDataset getPositiveTrainingImages(
InputStreamObjectReader reader) throws FileSystemException
{
final VFSListDataset images = new VFSListDataset(DataUtils.getDataLocation(
"INRIAPerson/train_64x128_H96/pos")
.toString(), reader);
return images;
}
public static > ListDataset generateNegativeExamples(int numSamplesPerImage,
int width, int height, long seed, InputStreamObjectReader reader) throws FileSystemException
{
final Random rng = new Random(seed);
final ListDataset images = getNegativeTrainingImages(reader);
final List data = new ArrayList();
for (int i = 0; i < images.size(); i++) {
final IMAGE image = images.getInstance(i);
final int imWidth = image.getWidth();
final int imHeight = image.getHeight();
for (int j = 0; j < numSamplesPerImage; j++) {
final NegEx ex = new NegEx();
ex.id = i;
ex.r = generateRandomRect(rng, imWidth, imHeight, width, height);
data.add(ex);
}
}
return new ListBackedDataset(new AbstractList() {
int lastId = -1;
IMAGE lastImage;
@Override
public IMAGE get(int index) {
final NegEx ex = data.get(index);
final IMAGE image;
if (ex.id != lastId) {
lastImage = images.get(ex.id);
lastId = ex.id;
}
image = lastImage;
return image.extractROI(ex.r);
}
@Override
public int size() {
return data.size();
}
});
}
private static Rectangle generateRandomRect(Random rng, int imWidth, int imHeight, int width, int height) {
final int maxx = imWidth - width;
final int maxy = imHeight - height;
final int x = rng.nextInt(maxx);
final int y = rng.nextInt(maxy);
return new Rectangle(x, y, width, height);
}
public static GroupedDataset, FImage> getTrainingData() throws FileSystemException {
final MapBackedDataset, FImage> ds = new MapBackedDataset, FImage>();
ds.put(true, getPositiveTrainingImages(ImageUtilities.FIMAGE_READER));
ds.put(false, generateNegativeExamples(10, 64, 128, 0L, ImageUtilities.FIMAGE_READER));
return ds;
}
}