
org.openimaj.demos.FVFWCheckGMM Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sandbox Show documentation
Show all versions of sandbox Show documentation
A project for various tests that don't quite constitute
demos but might be useful to look at.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.demos;
import java.io.File;
import java.io.IOException;
import java.util.Arrays;
import org.openimaj.feature.FloatFV;
import org.openimaj.feature.local.list.MemoryLocalFeatureList;
import org.openimaj.image.feature.dense.gradient.dsift.FloatDSIFTKeypoint;
import org.openimaj.image.feature.local.aggregate.FisherVector;
import org.openimaj.math.statistics.distribution.DiagonalMultivariateGaussian;
import org.openimaj.math.statistics.distribution.MixtureOfGaussians;
import org.openimaj.math.statistics.distribution.MultivariateGaussian;
import com.jmatio.io.MatFileReader;
import com.jmatio.io.MatFileWriter;
import com.jmatio.types.MLArray;
import com.jmatio.types.MLDouble;
import com.jmatio.types.MLSingle;
import com.jmatio.types.MLStructure;
/**
*
* @author Sina Samangooei ([email protected])
*/
public class FVFWCheckGMM {
private static final String GMM_MATLAB_FILE = "/Users/ss/Experiments/FVFW/data/gmm_512.mat";
private static final String[] FACE_DSIFTS_PCA = new String[] {
"/Users/ss/Experiments/FVFW/data/aaron-pcadsiftaug.mat"
};
public static void main(String[] args) throws IOException {
final MixtureOfGaussians mog = loadMoG();
final FisherVector fisher = new FisherVector(mog, true, true);
for (final String faceFile : FACE_DSIFTS_PCA) {
final MemoryLocalFeatureList loadDSIFTPCA = loadDSIFTPCA(faceFile);
final FloatFV fvec = fisher.aggregate(loadDSIFTPCA);
System.out.println(String.format("%s: %s", faceFile, fvec));
System.out.println("Writing...");
final File out = new File(faceFile + ".fisher.mat");
final MLArray data = toMLArray(fvec);
new MatFileWriter(out, Arrays.asList(data));
}
}
private static MemoryLocalFeatureList loadDSIFTPCA(String faceFile) throws IOException {
final File f = new File(faceFile);
final MatFileReader reader = new MatFileReader(f);
final MLSingle feats = (MLSingle) reader.getContent().get("feats");
final int nfeats = feats.getN();
final MemoryLocalFeatureList ret = new MemoryLocalFeatureList();
for (int i = 0; i < nfeats; i++) {
final FloatDSIFTKeypoint feature = new FloatDSIFTKeypoint();
feature.descriptor = new float[feats.getM()];
for (int j = 0; j < feature.descriptor.length; j++) {
feature.descriptor[j] = feats.get(j, i);
}
ret.add(feature);
}
return ret;
}
private static MLArray toMLArray(FloatFV fvec) {
final MLDouble data = new MLDouble("fisherface", new int[] { fvec.values.length, 1 });
for (int i = 0; i < fvec.values.length; i++) {
data.set((double) fvec.values[i], i, 0);
}
return data;
}
private static MixtureOfGaussians loadMoG() throws IOException {
final File f = new File(GMM_MATLAB_FILE);
final MatFileReader reader = new MatFileReader(f);
final MLStructure codebook = (MLStructure) reader.getContent().get("codebook");
final MLSingle mean = (MLSingle) codebook.getField("mean");
final MLSingle variance = (MLSingle) codebook.getField("variance");
final MLSingle coef = (MLSingle) codebook.getField("coef");
final int n_gaussians = mean.getN();
final int n_dims = mean.getM();
final MultivariateGaussian[] ret = new MultivariateGaussian[n_gaussians];
final double[] weights = new double[n_gaussians];
for (int i = 0; i < n_gaussians; i++) {
weights[i] = coef.get(i, 0);
final DiagonalMultivariateGaussian d = new DiagonalMultivariateGaussian(n_dims);
for (int j = 0; j < n_dims; j++) {
d.mean.set(0, j, mean.get(j, i));
d.variance[j] = variance.get(j, i);
}
ret[i] = d;
}
return new MixtureOfGaussians(ret, weights);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy