
org.openimaj.workinprogress.optimisation.SGD Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sandbox Show documentation
Show all versions of sandbox Show documentation
A project for various tests that don't quite constitute
demos but might be useful to look at.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.workinprogress.optimisation;
import java.util.Random;
import org.openimaj.data.DataSource;
import org.openimaj.data.DoubleArrayBackedDataSource;
import org.openimaj.workinprogress.optimisation.params.Parameters;
import org.openimaj.workinprogress.optimisation.params.VectorParameters;
import scala.actors.threadpool.Arrays;
public class SGD> {
public int maxEpochs = 100;
public int batchSize = 1;
public LearningRate learningRate;
public MODEL model;
public DifferentiableObjectiveFunction fcn;
public void train(DataSource data) {
final DATATYPE[] batch = data.createTemporaryArray(batchSize);
for (int e = 0; e < maxEpochs; e++) {
for (int i = 0; i < data.size(); i += batchSize) {
final int currentBatchStop = Math.min(data.size(), i + batchSize);
final int currentBatchSize = currentBatchStop - i;
data.getData(i, currentBatchStop, batch);
final PTYPE grads = fcn.derivative(model, batch[0]);
for (int j = 1; j < currentBatchSize; j++) {
grads.addInplace(fcn.derivative(model, batch[j]));
}
grads.multiplyInplace(learningRate.getRate(e, i, grads));
fcn.updateModel(model, grads);
}
}
}
public double value(MODEL model, DATATYPE data) {
return 0;
}
public static void main(String[] args) {
final double[][] data = new double[1000][2];
final Random rng = new Random();
for (int i = 0; i < data.length; i++) {
final double x = rng.nextDouble();
data[i][0] = x;
data[i][1] = 0.3 * x + 20 + (rng.nextGaussian() * 0.01);
}
final DoubleArrayBackedDataSource ds = new DoubleArrayBackedDataSource(data);
final double[] model = { 0, 0 };
final DifferentiableObjectiveFunction fcn = new DifferentiableObjectiveFunction()
{
@Override
public double value(double[] model, double[] data) {
final double diff = data[1] - (model[0] * data[0] + model[1]);
return diff * diff;
}
@Override
public VectorParameters derivative(double[] model, double[] data) {
final double[] der = {
2 * data[0] * (-data[1] + model[0] * data[0] + model[1]),
2 * (-data[1] + model[0] * data[0] + model[1])
};
return new VectorParameters(der);
}
@Override
public void updateModel(double[] model, VectorParameters weights) {
model[0] -= weights.vector[0];
model[1] -= weights.vector[1];
}
};
final SGD sgd = new SGD();
sgd.model = model;
sgd.fcn = fcn;
sgd.learningRate = new StaticLearningRate(0.01);
sgd.batchSize = 1;
sgd.maxEpochs = 10;
sgd.train(ds);
System.out.println(Arrays.toString(model));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy