org.openimaj.demos.FVFWCheckPCAGMM Maven / Gradle / Ivy
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.demos;
import java.io.File;
import java.io.IOException;
import java.util.Arrays;
import org.openimaj.feature.FloatFV;
import org.openimaj.feature.local.list.MemoryLocalFeatureList;
import org.openimaj.image.feature.dense.gradient.dsift.FloatDSIFTKeypoint;
import org.openimaj.image.feature.local.aggregate.FisherVector;
import org.openimaj.math.matrix.algorithm.pca.PrincipalComponentAnalysis;
import org.openimaj.math.matrix.algorithm.pca.ThinSvdPrincipalComponentAnalysis;
import org.openimaj.math.statistics.distribution.DiagonalMultivariateGaussian;
import org.openimaj.math.statistics.distribution.MixtureOfGaussians;
import org.openimaj.math.statistics.distribution.MultivariateGaussian;
import org.openimaj.util.array.ArrayUtils;
import Jama.Matrix;
import com.jmatio.io.MatFileReader;
import com.jmatio.io.MatFileWriter;
import com.jmatio.types.MLArray;
import com.jmatio.types.MLDouble;
import com.jmatio.types.MLSingle;
import com.jmatio.types.MLStructure;
/**
*
* @author Sina Samangooei ([email protected])
*/
public class FVFWCheckPCAGMM {
private static final String GMM_MATLAB_FILE = "/Users/ss/Experiments/FVFW/data/gmm_512.mat";
private static final String PCA_MATLAB_FILE = "/Users/ss/Experiments/FVFW/data/PCA_64.mat";
private static final String[] FACE_DSIFTS = new String[] {
"/Users/ss/Experiments/FVFW/data/Aaron_Eckhart_0001-pdfsift.bin"
};
public static void main(String[] args) throws IOException {
final MixtureOfGaussians mog = loadMoG(new File(GMM_MATLAB_FILE));
final PrincipalComponentAnalysis pca = loadPCA(new File(PCA_MATLAB_FILE));
final FisherVector fisher = new FisherVector(mog, true, true);
for (final String faceFile : FACE_DSIFTS) {
final MemoryLocalFeatureList loadDSIFT = MemoryLocalFeatureList.read(new File(faceFile),
FloatDSIFTKeypoint.class);
projectPCA(loadDSIFT, pca);
final FloatFV fvec = fisher.aggregate(loadDSIFT);
System.out.println(String.format("%s: %s", faceFile, fvec));
System.out.println("Writing...");
final File out = new File(faceFile + ".fisher.mat");
final MLArray data = toMLArray(fvec);
new MatFileWriter(out, Arrays.asList(data));
}
}
private static MLArray toMLArray(FloatFV fvec) {
final MLDouble data = new MLDouble("fisherface", new int[] { fvec.values.length, 1 });
for (int i = 0; i < fvec.values.length; i++) {
data.set((double) fvec.values[i], i, 0);
}
return data;
}
private static void projectPCA(
MemoryLocalFeatureList loadDSIFT,
PrincipalComponentAnalysis pca)
{
for (final FloatDSIFTKeypoint kp : loadDSIFT) {
kp.descriptor = ArrayUtils.convertToFloat(pca.project(ArrayUtils.convertToDouble(kp.descriptor)));
final int nf = kp.descriptor.length;
kp.descriptor = Arrays.copyOf(kp.descriptor, nf + 2);
kp.descriptor[nf] = (kp.x / 125f) - 0.5f;
kp.descriptor[nf + 1] = (kp.y / 160f) - 0.5f;
}
loadDSIFT.resetVecLength();
}
static class LoadedPCA extends ThinSvdPrincipalComponentAnalysis {
public LoadedPCA(Matrix basis, double[] mean) {
super(basis.getRowDimension());
this.basis = basis;
this.mean = mean;
}
}
public static PrincipalComponentAnalysis loadPCA(File f) throws IOException {
final MatFileReader reader = new MatFileReader(f);
final MLSingle mean = (MLSingle) reader.getContent().get("mu");
final MLSingle eigvec = (MLSingle) reader.getContent().get("proj");
final Matrix basis = new Matrix(eigvec.getM(), eigvec.getN());
final double[] meand = new double[eigvec.getN()];
for (int j = 0; j < eigvec.getN(); j++) {
// meand[i] = mean.get(i,0); ignore the means
meand[j] = 0;
for (int i = 0; i < eigvec.getM(); i++) {
basis.set(i, j, eigvec.get(i, j));
}
}
final PrincipalComponentAnalysis ret = new LoadedPCA(basis.transpose(), meand);
return ret;
}
public static MixtureOfGaussians loadMoG(File f) throws IOException {
final MatFileReader reader = new MatFileReader(f);
final MLStructure codebook = (MLStructure) reader.getContent().get("codebook");
final MLSingle mean = (MLSingle) codebook.getField("mean");
final MLSingle variance = (MLSingle) codebook.getField("variance");
final MLSingle coef = (MLSingle) codebook.getField("coef");
final int n_gaussians = mean.getN();
final int n_dims = mean.getM();
final MultivariateGaussian[] ret = new MultivariateGaussian[n_gaussians];
final double[] weights = new double[n_gaussians];
for (int i = 0; i < n_gaussians; i++) {
weights[i] = coef.get(i, 0);
final DiagonalMultivariateGaussian d = new DiagonalMultivariateGaussian(n_dims);
for (int j = 0; j < n_dims; j++) {
d.mean.set(0, j, mean.get(j, i));
d.variance[j] = variance.get(j, i);
}
ret[i] = d;
}
return new MixtureOfGaussians(ret, weights);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy