org.openimaj.demos.FVFWFVEncodeMatlab Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sandbox Show documentation
Show all versions of sandbox Show documentation
A project for various tests that don't quite constitute
demos but might be useful to look at.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.demos;
import java.io.File;
import java.io.IOException;
import org.openimaj.demos.FVFWDSift.DSFactory;
import org.openimaj.feature.FloatFV;
import org.openimaj.feature.local.list.LocalFeatureList;
import org.openimaj.feature.local.list.MemoryLocalFeatureList;
import org.openimaj.image.FImage;
import org.openimaj.image.ImageUtilities;
import org.openimaj.image.analysis.pyramid.SimplePyramid;
import org.openimaj.image.feature.dense.gradient.dsift.ApproximateDenseSIFT;
import org.openimaj.image.feature.dense.gradient.dsift.ByteDSIFTKeypoint;
import org.openimaj.image.feature.dense.gradient.dsift.DenseSIFT;
import org.openimaj.image.feature.dense.gradient.dsift.FloatDSIFTKeypoint;
import org.openimaj.image.feature.local.aggregate.FisherVector;
import org.openimaj.io.IOUtils;
import org.openimaj.math.matrix.algorithm.pca.PrincipalComponentAnalysis;
import org.openimaj.math.statistics.distribution.MixtureOfGaussians;
import org.openimaj.util.array.ArrayUtils;
import org.openimaj.util.function.Operation;
import org.openimaj.util.parallel.Parallel;
import scala.actors.threadpool.Arrays;
public class FVFWFVEncodeMatlab {
/**
* @param args
* @throws IOException
*/
@SuppressWarnings("unchecked")
public static void main(String[] args) throws IOException {
final MixtureOfGaussians gmm = FVFWCheckPCAGMM.loadMoG(new File(
"/Users/jon/Downloads/data/lfw_aligned/SIFT_1pix_PCA64_GMM512/codebooks/1/gmm_512.mat"));
final PrincipalComponentAnalysis pca = FVFWCheckPCAGMM.loadPCA(new File(
"/Users/jon/Downloads/data/lfw_aligned/SIFT_1pix_PCA64_GMM512/codebooks/1/PCA_64.mat"));
final FisherVector fisher = new FisherVector(gmm, true, true);
final DSFactory factory = new DSFactory() {
@Override
public DenseSIFT create() {
return new ApproximateDenseSIFT(1, 6);
}
};
final File indir = new File("/Volumes/Raid/face_databases/lfw-centre-affine-matlab/");
final File outdir = new File("/Volumes/Raid/face_databases/lfw-centre-affine-matlab-fisher/");
Parallel.forEach(Arrays.asList(indir.listFiles()), new Operation() {
@Override
public void perform(File dir) {
if (dir.isDirectory()) {
final DenseSIFT sift = factory.create();
for (final File f : dir.listFiles()) {
if (f.getName().endsWith(".jpg")) {
try {
final File outfile = new File(outdir, f.getAbsolutePath().replace(
indir.getAbsolutePath(), "").replace(".jpg", ".bin"));
outfile.getParentFile().mkdirs();
if (outfile.exists())
continue;
System.out.println(f);
final LocalFeatureList features = computeFeatures(f, pca, sift);
final FloatFV fv = fisher.aggregate(features);
IOUtils.writeBinary(outfile, fv);
} catch (final Exception e) {
e.printStackTrace();
}
}
}
}
}
private LocalFeatureList computeFeatures(File f, PrincipalComponentAnalysis pca,
DenseSIFT sift) throws IOException
{
final FImage image = ImageUtilities.readF(f);
final SimplePyramid pyr = new SimplePyramid((float) Math.sqrt(2), 5);
pyr.processImage(image);
final LocalFeatureList allKeys = new MemoryLocalFeatureList();
for (final FImage img : pyr) {
sift.analyseImage(img);
final double scale = 160.0 / img.height;
final LocalFeatureList kps = sift.getByteKeypoints();
for (final ByteDSIFTKeypoint kp : kps) {
kp.x = (float) ((kp.x + 1) * scale);
kp.y = (float) ((kp.y + 1) * scale);
float[] descriptor = new float[128];
float sumsq = 0;
// reorder to make comparision with matlab
// easier; add offset
for (int i = 0; i < 16; i++) {
descriptor[i * 8] = kp.descriptor[i * 8] + 128;
descriptor[i * 8 + 1] = kp.descriptor[i * 8 + 7] + 128;
descriptor[i * 8 + 2] = kp.descriptor[i * 8 + 6] + 128;
descriptor[i * 8 + 3] = kp.descriptor[i * 8 + 5] + 128;
descriptor[i * 8 + 4] = kp.descriptor[i * 8 + 4] + 128;
descriptor[i * 8 + 5] = kp.descriptor[i * 8 + 3] + 128;
descriptor[i * 8 + 6] = kp.descriptor[i * 8 + 2] + 128;
descriptor[i * 8 + 7] = kp.descriptor[i * 8 + 1] + 128;
}
// rootsift
for (int i = 0; i < 128; i++) {
descriptor[i] = (float) Math.sqrt(descriptor[i]);
sumsq += descriptor[i] * descriptor[i];
}
sumsq = (float) Math.sqrt(sumsq);
final float norm = 1f / Math.max(Float.MIN_NORMAL, sumsq);
for (int i = 0; i < 128; i++) {
descriptor[i] *= norm;
}
// PCA
descriptor = ArrayUtils.convertToFloat(pca.project(ArrayUtils.convertToDouble(descriptor)));
// Augment
final int nf = descriptor.length;
descriptor = Arrays.copyOf(descriptor, nf + 2);
descriptor[nf] = (kp.x / 125f) - 0.5f;
descriptor[nf + 1] = (kp.y / 160f) - 0.5f;
allKeys.add(new FloatDSIFTKeypoint(kp.x, kp.y, descriptor, kp.energy));
}
}
return allKeys;
}
});
FVFWExperiment.main(null);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy