org.openimaj.demos.ImageFeatureMDS Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sandbox Show documentation
Show all versions of sandbox Show documentation
A project for various tests that don't quite constitute
demos but might be useful to look at.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.demos;
import java.net.URL;
import org.openimaj.feature.DoubleFV;
import org.openimaj.feature.DoubleFVComparison;
import org.openimaj.image.DisplayUtilities;
import org.openimaj.image.ImageUtilities;
import org.openimaj.image.MBFImage;
import org.openimaj.image.colour.ColourSpace;
import org.openimaj.image.dataset.FlickrImageDataset;
import org.openimaj.image.pixel.statistics.HistogramModel;
import org.openimaj.math.geometry.point.Point2d;
import org.openimaj.math.geometry.transforms.TransformUtilities;
import org.openimaj.math.matrix.similarity.SimilarityMatrix;
import org.openimaj.math.matrix.similarity.processor.MultidimensionalScaling;
import org.openimaj.util.api.auth.DefaultTokenFactory;
import org.openimaj.util.api.auth.common.FlickrAPIToken;
import org.openimaj.util.pair.IndependentPair;
public class ImageFeatureMDS {
public static void main(String[] args) throws Exception {
final FlickrAPIToken token = DefaultTokenFactory.getInstance().getToken(FlickrAPIToken.class);
final int numImages = 20;
final FlickrImageDataset dataset = FlickrImageDataset.create(ImageUtilities.MBFIMAGE_READER, token,
"colorful", numImages);
dataset.getPhotos().set(1, dataset.getPhoto(0));
final DoubleFV[] features = new DoubleFV[numImages];
for (int i = 0; i < numImages; i++) {
features[i] = extractFeature(dataset.get(i));
}
final SimilarityMatrix matrix = new SimilarityMatrix(numImages);
for (int i = 0; i < numImages; i++) {
matrix.setIndexValue(i, dataset.getID(i));
final DoubleFV fi = features[i];
for (int j = 0; j < numImages; j++) {
final DoubleFV fj = features[j];
matrix.set(i, j, fi.compare(fj, DoubleFVComparison.COSINE_SIM));
}
}
System.out.println(matrix);
final MultidimensionalScaling mds = new MultidimensionalScaling();
mds.process(matrix);
System.out.println(mds.getPoints());
final MBFImage img = new MBFImage(1000, 1000, ColourSpace.RGB);
for (final IndependentPair pt : mds.getPoints()) {
// img.drawPoint(pt.getSecondObject(), RGBColour.RED, 3);
final int idx = dataset.indexOfID(pt.firstObject());
final MBFImage thumb = ImageUtilities.readMBF(new URL(dataset.getPhoto(idx).getThumbnailUrl()));
img.drawImage(thumb, pt.getSecondObject().transform(TransformUtilities.scaleMatrix(1000, 1000)));
}
DisplayUtilities.display(img);
}
static DoubleFV extractFeature(MBFImage image) {
final HistogramModel model = new HistogramModel(4, 4, 4);
model.estimateModel(image);
return model.histogram.normaliseFV();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy