org.openimaj.demos.ml.linear.data.WikipediaPerceptronExample Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sandbox Show documentation
Show all versions of sandbox Show documentation
A project for various tests that don't quite constitute
demos but might be useful to look at.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.demos.ml.linear.data;
import java.util.ArrayList;
import java.util.List;
import org.openimaj.ml.linear.data.FixedDataGenerator;
import org.openimaj.ml.linear.kernel.LinearVectorKernel;
import org.openimaj.ml.linear.learner.perceptron.DoubleArrayKernelPerceptron;
import org.openimaj.ml.linear.learner.perceptron.MeanCenteredKernelPerceptron;
import org.openimaj.ml.linear.learner.perceptron.PerceptronClass;
import org.openimaj.ml.linear.learner.perceptron.ThresholdDoubleArrayKernelPerceptron;
import org.openimaj.util.pair.IndependentPair;
import cern.colt.Arrays;
/**
*
* @author Sina Samangooei ([email protected])
*/
public class WikipediaPerceptronExample {
/**
* @param args
*/
public static void main(String[] args) {
thresholded(createData());
centered(createData());
}
private static void centered(FixedDataGenerator fdg) {
System.out.println("CENTERED");
final DoubleArrayKernelPerceptron mkp = new MeanCenteredKernelPerceptron(new LinearVectorKernel());
for (int i = 0; i < 10; i++) {
System.out.println("Iteration: " + i);
for (int j = 0; j < 4; j++) {
final IndependentPair v = fdg.generate();
final double[] x = v.firstObject();
final PerceptronClass y = v.secondObject();
final PerceptronClass yestb = mkp.predict(x);
mkp.process(x, y);
final PerceptronClass yesta = mkp.predict(x);
System.out.println(String.format("x: %s, y: %s, ypred_b: %s, ypred_a: %s", Arrays.toString(x), y, yestb,
yesta));
// System.out.println(mkp.getWeights());
}
}
}
private static FixedDataGenerator createData() {
final List> data = new ArrayList>();
data.add(IndependentPair.pair(new double[] { 1, 0, 0 }, PerceptronClass.TRUE));
data.add(IndependentPair.pair(new double[] { 1, 0, 1 }, PerceptronClass.TRUE));
data.add(IndependentPair.pair(new double[] { 1, 1, 0 }, PerceptronClass.TRUE));
data.add(IndependentPair.pair(new double[] { 1, 1, 1 }, PerceptronClass.FALSE));
final FixedDataGenerator fdg = new FixedDataGenerator(data);
return fdg;
}
private static void thresholded(
FixedDataGenerator fdg)
{
System.out.println("Thresholded");
final DoubleArrayKernelPerceptron mkp = new ThresholdDoubleArrayKernelPerceptron(new LinearVectorKernel());
for (int i = 0; i < 10; i++) {
System.out.println("Iteration: " + i);
for (int j = 0; j < 4; j++) {
final IndependentPair v = fdg.generate();
final double[] x = v.firstObject();
final PerceptronClass y = v.secondObject();
final PerceptronClass yestb = mkp.predict(x);
mkp.process(x, y);
final PerceptronClass yesta = mkp.predict(x);
System.out.println(String.format("x: %s, y: %s, ypred_b: %s, ypred_a: %s", Arrays.toString(x), y, yestb,
yesta));
// System.out.println(mkp.getWeights());
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy