org.openimaj.ml.clustering.kdtree.KDTreeClusters Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sandbox Show documentation
Show all versions of sandbox Show documentation
A project for various tests that don't quite constitute
demos but might be useful to look at.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.ml.clustering.kdtree;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import org.openimaj.ml.clustering.IndexClusters;
import org.openimaj.ml.clustering.SpatialClusters;
import org.openimaj.ml.clustering.assignment.HardAssigner;
import org.openimaj.util.pair.IntDoublePair;
import org.openimaj.util.tree.DoubleKDTree;
import org.openimaj.util.tree.DoubleKDTree.KDTreeNode;
/**
*
* @author Sina Samangooei ([email protected])
*/
public class KDTreeClusters extends IndexClusters implements SpatialClusters {
private final class KDHardTreeAssigner implements HardAssigner {
private Map clusterToIndex;
public KDHardTreeAssigner() {
this.clusterToIndex = new HashMap();
for (int i = 0; i < KDTreeClusters.this.leaves.size(); i++) {
this.clusterToIndex.put(leaves.get(i), i);
}
}
@Override
public int numDimensions() {
return dims;
}
@Override
public int[] assign(double[][] data) {
int[] ret = new int[data.length];
for (int i = 0; i < ret.length; i++) {
ret[i] = assign(data[i]);
}
return ret;
}
@Override
public int assign(double[] data) {
KDTreeNode toFollow = tree.root;
while(toFollow.indices == null){
if(data[toFollow.discriminantDimension] < toFollow.discriminant){
toFollow = toFollow.left;
}
else{
toFollow = toFollow.right;
}
}
return this.clusterToIndex.get(toFollow.indices);
}
@Override
public void assignDistance(double[][] data, int[] indices, double[] distances) {
throw new UnsupportedOperationException();
}
@Override
public IntDoublePair assignDistance(double[] data) {
throw new UnsupportedOperationException();
}
@Override
public int size() {
return numClusters();
}
}
private List leaves;
private int dims;
private DoubleKDTree tree;
/**
* @param tree the KDTree which represents the clusters
* @param dims
*/
public KDTreeClusters(DoubleKDTree tree, int dims) {
this.tree = tree;
this.leaves = tree.leafIndices();
this.dims = dims;
this.clusters = new int[leaves.size()][];
for (int i = 0; i < clusters.length; i++) {
clusters[i] = leaves.get(i);
this.nEntries += this.clusters[i].length;
}
}
@Override
public int numDimensions() {
return dims;
}
@Override
public int numClusters() {
return leaves.size();
}
@Override
public HardAssigner defaultHardAssigner() {
return new KDHardTreeAssigner();
}
@Override
public void readASCII(Scanner in) throws IOException { throw new UnsupportedOperationException(); }
@Override
public String asciiHeader() { throw new UnsupportedOperationException(); }
@Override
public void readBinary(DataInput in) throws IOException{ throw new UnsupportedOperationException(); }
@Override
public byte[] binaryHeader() { throw new UnsupportedOperationException(); }
@Override
public void writeASCII(PrintWriter out) throws IOException { throw new UnsupportedOperationException(); }
@Override
public void writeBinary(DataOutput out) throws IOException { throw new UnsupportedOperationException(); }
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy