org.openimaj.ml.clustering.spectral.WineDatasetExperiment Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sandbox Show documentation
Show all versions of sandbox Show documentation
A project for various tests that don't quite constitute
demos but might be useful to look at.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.ml.clustering.spectral;
import java.util.Iterator;
import java.util.List;
import org.apache.log4j.Logger;
import org.openimaj.experiment.evaluation.cluster.ClusterEvaluator;
import org.openimaj.experiment.evaluation.cluster.analyser.FullMEAnalysis;
import org.openimaj.experiment.evaluation.cluster.analyser.FullMEClusterAnalyser;
import org.openimaj.experiment.evaluation.cluster.processor.Clusterer;
import org.openimaj.feature.DoubleFVComparison;
import org.openimaj.knn.DoubleNearestNeighboursExact;
import org.openimaj.ml.clustering.SpatialClusterer;
import org.openimaj.ml.clustering.SpatialClusters;
import org.openimaj.ml.clustering.dbscan.DistanceDBSCAN;
import org.openimaj.ml.clustering.dbscan.DoubleDBSCANClusters;
import org.openimaj.ml.clustering.dbscan.DoubleNNDBSCAN;
import org.openimaj.ml.clustering.dbscan.SparseMatrixDBSCAN;
import org.openimaj.ml.dataset.WineDataset;
import org.openimaj.util.function.Function;
import org.openimaj.util.pair.DoubleObjectPair;
import ch.akuhn.matrix.SparseMatrix;
import ch.akuhn.matrix.Vector;
import ch.akuhn.matrix.eigenvalues.AllEigenvalues;
import ch.akuhn.matrix.eigenvalues.Eigenvalues;
/**
* Perform spectral clustering experiments using the Wine Dataset
* @author Sina Samangooei ([email protected])
*
*/
public class WineDatasetExperiment {
private static final int MAXIMUM_DISTANCE = 300;
private static Logger logger = Logger.getLogger(WineDatasetExperiment.class);
/**
* @param args
*/
public static void main(String[] args) {
WineDataset ds = new WineDataset(2,3);
// logger.info("Clustering using spectral clustering");
// DoubleSpectralClustering clust = prepareSpectralClustering();
// ClustererWrapper spectralWrapper = new NormalisedSimilarityDoubleClustererWrapper(
// ds,
// new WrapperExtractor(),
// clust,
// MAXIMUM_DISTANCE
// );
// evaluate(ds, clust);
// logger.info("Clustering using DBScan");
// DoubleDBSCAN dbScan = prepareDBScane();
// ClustererWrapper dbScanWrapper = new NormalisedSimilarityDoubleClustererWrapper(
// ds,
// new WrapperExtractor(),
// dbScan,
// MAXIMUM_DISTANCE
// );
// evaluate(ds, dbScan);
logger.info("Clustering using modified spectral clustering");
DoubleSpectralClustering clustCSP = prepareCSPSpectralClustering(ds);
Function,SparseMatrix> func = new RBFSimilarityDoubleClustererWrapper(new DummyExtractor());
evaluate(ds, clustCSP, func);
}
private static DoubleSpectralClustering prepareCSPSpectralClustering(WineDataset ds) {
SpatialClusterer extends SpatialClusters, double[]> cl = null;
// Creater the spectral clustering
SpectralClusteringConf conf = new SpectralClusteringConf(cl );
conf.eigenChooser = new EigenChooser() {
@Override
public Eigenvalues prepare(SparseMatrix laplacian) {
Eigenvalues eig = new AllEigenvalues(laplacian);
return eig;
}
@Override
public int nEigenVectors(Iterator> vals, int totalEigenVectors) {
// TODO Auto-generated method stub
return 0;
}
};
DoubleSpectralClustering clust = new DoubleSpectralClustering(conf);
return clust;
}
private static SparseMatrixDBSCAN prepareDBScane() {
// Creater the spectral clustering
double epss = 0.5;
SparseMatrixDBSCAN inner = new DistanceDBSCAN(epss, 1);
return inner;
}
private static DoubleSpectralClustering prepareSpectralClustering() {
// Creater the spectral clustering
double epss = 0.6;
SpatialClusterer inner = new DoubleNNDBSCAN(epss, 2,new DoubleNearestNeighboursExact.Factory(DoubleFVComparison.EUCLIDEAN));
SpectralClusteringConf conf = new SpectralClusteringConf(
inner
);
// conf.eigenChooser = new AutoSelectingEigenChooser(100, 1.0);
conf.eigenChooser = new HardCodedEigenChooser(10);
DoubleSpectralClustering clust = new DoubleSpectralClustering(conf);
return clust;
}
private static void evaluate(WineDataset ds, Clusterer clust, Function, SparseMatrix> func) {
ClusterEvaluator eval = new ClusterEvaluator(clust,ds,func,new FullMEClusterAnalyser());
int[][] evaluate = eval.evaluate();
logger.info("Expected Classes: " + ds.size());
logger.info("Detected Classes: " + evaluate.length);
FullMEAnalysis res = eval.analyse(evaluate);
System.out.println(res.getSummaryReport());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy