org.openimaj.workinprogress.featlearn.cifarexps.KMeansExp1 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sandbox Show documentation
Show all versions of sandbox Show documentation
A project for various tests that don't quite constitute
demos but might be useful to look at.
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.workinprogress.featlearn.cifarexps;
import java.io.IOException;
import java.util.List;
import org.openimaj.image.DisplayUtilities;
import org.openimaj.image.MBFImage;
import org.openimaj.image.pixel.sampling.RectangleSampler;
import org.openimaj.math.geometry.shape.Rectangle;
import org.openimaj.math.matrix.algorithm.whitening.WhiteningTransform;
import org.openimaj.math.matrix.algorithm.whitening.ZCAWhitening;
import org.openimaj.math.statistics.normalisation.Normaliser;
import org.openimaj.math.statistics.normalisation.PerExampleMeanCenterVar;
import org.openimaj.ml.clustering.kmeans.SphericalKMeans;
import org.openimaj.ml.clustering.kmeans.SphericalKMeans.IterationResult;
import org.openimaj.ml.clustering.kmeans.SphericalKMeansResult;
import org.openimaj.util.function.Operation;
public class KMeansExp1 extends CIFARExperimentFramework {
Normaliser patchNorm = new PerExampleMeanCenterVar(10.0 / 255.0);
WhiteningTransform whitening = new ZCAWhitening(0.1, patchNorm);
int numCentroids = 1600;
int numIters = 10;
private double[][] dictionary;
final RectangleSampler rs = new RectangleSampler(new Rectangle(0, 0, 32, 32), 1, 1, patchSize, patchSize);
final List rectangles = rs.allRectangles();
@Override
protected void learnFeatures(double[][] patches) {
whitening.train(patches);
final double[][] whitenedFeaturePatches = whitening.whiten(patches);
final SphericalKMeans skm = new SphericalKMeans(numCentroids, numIters);
skm.addIterationListener(new Operation() {
@Override
public void perform(IterationResult object) {
System.out.println("KMeans iteration " + object.iteration + " / " + numIters);
DisplayUtilities.display(drawCentroids(object.result.centroids));
}
});
final SphericalKMeansResult res = skm.cluster(whitenedFeaturePatches);
this.dictionary = res.centroids;
DisplayUtilities.display(drawCentroids(this.dictionary));
}
MBFImage drawCentroids(double[][] centroids) {
final int wh = (int) Math.sqrt(numCentroids);
final MBFImage tmp = new MBFImage(wh * (patchSize + 1) + 1, wh * (patchSize + 1) + 1);
final float mn = -1.0f;
final float mx = +1.0f;
tmp.fill(new Float[] { mx, mx, mx });
for (int i = 0, y = 0; y < wh; y++) {
for (int x = 0; x < wh; x++, i++) {
final MBFImage p = new MBFImage(centroids[i], patchSize, patchSize, 3, false);
tmp.drawImage(p, x * (patchSize + 1) + 1, y * (patchSize + 1) + 1);
}
}
tmp.subtractInplace(mn);
tmp.divideInplace(mx - mn);
return tmp;
}
@Override
protected double[] extractFeatures(MBFImage image) {
double[][] patches = new double[rectangles.size()][];
final MBFImage tmpImage = new MBFImage(this.patchSize, this.patchSize);
for (int i = 0; i < patches.length; i++) {
final Rectangle r = rectangles.get(i);
patches[i] = image.extractROI((int) r.x, (int) r.y, tmpImage).getDoublePixelVector();
}
patches = whitening.whiten(patches);
patches = activation(patches);
// sum pooling
final double[] feature = pool(patches);
return feature;
}
private double[] pool(double[][] patches) {
final double[] feature = new double[dictionary.length * 4];
final int sz = (int) Math.sqrt(patches.length);
final int hsz = sz / 2;
for (int j = 0; j < sz; j++) {
final int by = j < hsz ? 0 : 1;
for (int i = 0; i < sz; i++) {
final int bx = i < hsz ? 0 : 1;
final double[] p = patches[j * sz + i];
for (int k = 0; k < p.length; k++)
feature[2 * dictionary.length * by + dictionary.length * bx + k] += p[k];
}
}
return feature;
}
// private double[][] activation(double[][] p) {
// final double[][] c = this.dictionary;
// final double[][] result = new double[p.length][c.length];
//
// final double[] z = new double[c.length];
// for (int i = 0; i < p.length; i++) {
// final double[] x = p[i];
// double mu = 0;
// for (int k = 0; k < z.length; k++) {
// z[k] = 0;
// for (int j = 0; j < x.length; j++) {
// final double d = x[j] - c[k][j];
// z[k] += d * d;
// }
// z[k] = Math.sqrt(z[k]);
// mu += z[k];
// }
//
// mu /= z.length;
//
// for (int k = 0; k < z.length; k++) {
// result[i][k] = Math.max(0, mu - z[k]);
// }
// }
//
// return result;
// }
private double[][] activation(double[][] p) {
final double[][] c = this.dictionary;
final double[][] result = new double[p.length][c.length];
for (int i = 0; i < p.length; i++) {
final double[] x = p[i];
for (int k = 0; k < c.length; k++) {
double dx = 0;
for (int j = 0; j < x.length; j++) {
dx += c[k][j] * x[j];
}
result[i][k] = Math.max(0, Math.abs(dx) - 0.5);
}
}
return result;
}
public static void main(String[] args) throws IOException {
new KMeansExp1().run();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy