org.openjdk.jmh.samples.JMHSample_07_FixtureLevelInvocation Maven / Gradle / Ivy
/*
* Copyright (c) 2014, Oracle America, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Oracle nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openjdk.jmh.samples;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Level;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.TearDown;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
/**
* Fixtures have different Levels to control when they are about to run.
* Level.Invocation is useful sometimes to do some per-invocation work
* which should not count as payload (e.g. sleep for some time to emulate
* think time)
*/
@OutputTimeUnit(TimeUnit.MICROSECONDS)
public class JMHSample_07_FixtureLevelInvocation {
/*
* Fixtures have different Levels to control when they are about to run.
* Level.Invocation is useful sometimes to do some per-invocation work,
* which should not count as payload. PLEASE NOTE the timestamping and
* synchronization for Level.Invocation helpers might significantly
* offset the measurement, use with care. See Level.Invocation javadoc
* for more discussion.
*
* Consider this sample:
*/
/*
* This state handles the executor.
* Note we create and shutdown executor with Level.Trial, so
* it is kept around the same across all iterations.
*/
@State(Scope.Benchmark)
public static class NormalState {
ExecutorService service;
@Setup(Level.Trial)
public void up() {
service = Executors.newCachedThreadPool();
}
@TearDown(Level.Trial)
public void down() {
service.shutdown();
}
}
/*
* This is the *extension* of the basic state, which also
* has the Level.Invocation fixture method, sleeping for some time.
*/
public static class LaggingState extends NormalState {
public static final int SLEEP_TIME = Integer.getInteger("sleepTime", 10);
@Setup(Level.Invocation)
public void lag() throws InterruptedException {
TimeUnit.MILLISECONDS.sleep(SLEEP_TIME);
}
}
/*
* This allows us to formulate the task: measure the task turnaround in
* "hot" mode when we are not sleeping between the submits, and "cold" mode,
* when we are sleeping.
*/
@Benchmark
@BenchmarkMode(Mode.AverageTime)
public double measureHot(NormalState e, final Scratch s) throws ExecutionException, InterruptedException {
return e.service.submit(new Task(s)).get();
}
@Benchmark
@BenchmarkMode(Mode.AverageTime)
public double measureCold(LaggingState e, final Scratch s) throws ExecutionException, InterruptedException {
return e.service.submit(new Task(s)).get();
}
/*
* This is our scratch state which will handle the work.
*/
@State(Scope.Thread)
public static class Scratch {
private double p;
public double doWork() {
p = Math.log(p);
return p;
}
}
public static class Task implements Callable {
private Scratch s;
public Task(Scratch s) {
this.s = s;
}
@Override
public Double call() {
return s.doWork();
}
}
/*
* ============================== HOW TO RUN THIS TEST: ====================================
*
* You can see the cold scenario is running longer, because we pay for
* thread wakeups.
*
* You can run this test:
*
* a) Via the command line:
* $ mvn clean install
* $ java -jar target/benchmarks.jar JMHSample_07 -wi 5 -i 5 -f 1
* (we requested 5 warmup/measurement iterations, single fork)
*
* b) Via the Java API:
* (see the JMH homepage for possible caveats when running from IDE:
* http://openjdk.java.net/projects/code-tools/jmh/)
*/
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(JMHSample_07_FixtureLevelInvocation.class.getSimpleName())
.warmupIterations(5)
.measurementIterations(5)
.forks(1)
.build();
new Runner(opt).run();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy