Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.javafx.geom;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
*
*/
public class CubicApproximator {
private float accuracy;
private float maxCubicSize;
public CubicApproximator(float accuracy, float maxCubicSize) {
this.accuracy = accuracy;
this.maxCubicSize = maxCubicSize;
}
public void setAccuracy(float accuracy) {
this.accuracy = accuracy;
}
public float getAccuracy() {
return accuracy;
}
public void setMaxCubicSize(float maxCCubicSize) {
this.maxCubicSize = maxCCubicSize;
}
public float getMaxCubicSize() {
return maxCubicSize;
}
public float approximate(List res, List tmp,
CubicCurve2D curve) {
float d = getApproxError(curve);
if (d < accuracy) {
tmp.add(curve);
res.add(approximate(curve));
return d;
} else {
SplitCubic(tmp, new float[] {curve.x1, curve.y1,
curve.ctrlx1, curve.ctrly1,
curve.ctrlx2, curve.ctrly2,
curve.x2, curve.y2});
return approximate(tmp, res);
}
}
public float approximate(List res, CubicCurve2D curve) {
List tmp = new ArrayList();
return approximate(res, tmp, curve);
}
private QuadCurve2D approximate(CubicCurve2D c) {
// Using following approximation of the control point: (3P1-P0+3P2-P3)/4
return new QuadCurve2D(c.x1, c.y1,
(3f*c.ctrlx1 - c.x1 + 3f*c.ctrlx2 - c.x2)/4f,
(3f*c.ctrly1 - c.y1 + 3f*c.ctrly2 - c.y2)/4f,
c.x2, c.y2);
}
private float approximate(List curves,
List res)
{
QuadCurve2D approx = approximate(curves.get(0));
float dMax = CubicApproximator.compareCPs(
curves.get(0), CubicApproximator.elevate(approx));
res.add(approx);
for (int i = 1; i < curves.size(); i++) {
approx = approximate(curves.get(i));
float d = CubicApproximator.compareCPs(
curves.get(i), CubicApproximator.elevate(approx));
if (d > dMax) {
dMax = d;
}
res.add(approx);
}
return dMax;
}
private static CubicCurve2D elevate(QuadCurve2D q) {
return new CubicCurve2D(q.x1, q.y1,
(q.x1 + 2f*q.ctrlx)/3f,
(q.y1 + 2f*q.ctrly)/3f,
(2f*q.ctrlx + q.x2)/3f,
(2f*q.ctrly + q.y2)/3f,
q.x2, q.y2);
}
private static float compare(CubicCurve2D c1, CubicCurve2D c2) {
float res = Math.abs(c1.x1 - c2.x1);
float d = Math.abs(c1.y1 - c2.y1);
if (res < d) res = d;
d = Math.abs(c1.ctrlx1 - c2.ctrlx1);
if (res < d) res = d;
d = Math.abs(c1.ctrly1 - c2.ctrly1);
if (res < d) res = d;
d = Math.abs(c1.ctrlx2 - c2.ctrlx2);
if (res < d) res = d;
d = Math.abs(c1.ctrly2 - c2.ctrly2);
if (res < d) res = d;
d = Math.abs(c1.x2 - c2.x2);
if (res < d) res = d;
d = Math.abs(c1.y2 - c2.y2);
if (res < d) res = d;
return res;
}
private static float getApproxError(float [] coords) {
/* Calculating error for approximation using formula:
* max(|(-3P1+P0+3P2-P3)/6|, |(3P1-P0-3P2+P3)/6|)
*/
float res =
(-3f*coords[2] + coords[0] + 3f*coords[4] - coords[6])/6f;
float d = (-3f*coords[3] + coords[1] + 3f*coords[5] - coords[7])/6f;
if (res < d) res = d;
d = (3f*coords[2] - coords[0] - 3f*coords[4] + coords[6])/6f;
if (res < d) res = d;
d = (3f*coords[3] - coords[1] - 3f*coords[5] + coords[7])/6f;
if (res < d) res = d;
return res;
}
public static float getApproxError(CubicCurve2D curve) {
return getApproxError(new float[] {curve.x1, curve.y1,
curve.ctrlx1, curve.ctrly1,
curve.ctrlx2, curve.ctrly2,
curve.x2, curve.y2});
}
private static float compareCPs(CubicCurve2D c1, CubicCurve2D c2) {
float res = Math.abs(c1.ctrlx1 - c2.ctrlx1);
float d = Math.abs(c1.ctrly1 - c2.ctrly1);
if (res < d) res = d;
d = Math.abs(c1.ctrlx2 - c2.ctrlx2);
if (res < d) res = d;
d = Math.abs(c1.ctrly2 - c2.ctrly2);
if (res < d) res = d;
return res;
}
/*
* Checking size of the cubic curves and split them if necessary.
* Calling DrawMonotonicCubic for the curves of the appropriate size.
* Note: coords array could be changed
*/
private void ProcessMonotonicCubic(List resVect,
float[] coords)
{
float[] coords1 = new float[8];
float tx, ty;
float xMin, xMax;
float yMin, yMax;
xMin = xMax = coords[0];
yMin = yMax = coords[1];
for (int i = 2; i < 8; i += 2) {
xMin = (xMin > coords[i])? coords[i] : xMin;
xMax = (xMax < coords[i])? coords[i] : xMax;
yMin = (yMin > coords[i + 1])? coords[i + 1] : yMin;
yMax = (yMax < coords[i + 1])? coords[i + 1] : yMax;
}
if (xMax - xMin > maxCubicSize || yMax - yMin > maxCubicSize ||
getApproxError(coords) > accuracy) {
coords1[6] = coords[6];
coords1[7] = coords[7];
coords1[4] = (coords[4] + coords[6])/2f;
coords1[5] = (coords[5] + coords[7])/2f;
tx = (coords[2] + coords[4])/2f;
ty = (coords[3] + coords[5])/2f;
coords1[2] = (tx + coords1[4])/2f;
coords1[3] = (ty + coords1[5])/2f;
coords[2] = (coords[0] + coords[2])/2f;
coords[3] = (coords[1] + coords[3])/2f;
coords[4] = (coords[2] + tx)/2f;
coords[5] = (coords[3] + ty)/2f;
coords[6]=coords1[0]=(coords[4] + coords1[2])/2f;
coords[7]=coords1[1]=(coords[5] + coords1[3])/2f;
ProcessMonotonicCubic(resVect, coords);
ProcessMonotonicCubic(resVect, coords1);
} else {
resVect.add(new CubicCurve2D(
coords[0], coords[1], coords[2], coords[3],
coords[4], coords[5], coords[6], coords[7]));
}
}
/*
* Split cubic curve into monotonic in X and Y parts. Calling
*
* Note: coords array could be changed
*/
public void SplitCubic(List resVect,
float[] coords)
{
/* Temporary array for holding parameters corresponding to the extreme
* in X and Y points
*/
float params[] = new float[4];
float eqn[] = new float[3];
float res[] = new float[2];
int cnt = 0;
/* Simple check for monotonicity in X before searching for the extreme
* points of the X(t) function. We first check if the curve is
* monotonic in X by seeing if all of the X coordinates are strongly
* ordered.
*/
if ((coords[0] > coords[2] || coords[2] > coords[4] ||
coords[4] > coords[6]) &&
(coords[0] < coords[2] || coords[2] < coords[4] ||
coords[4] < coords[6]))
{
/* Searching for extreme points of the X(t) function by solving
* dX(t)
* ---- = 0 equation
* dt
*/
eqn[2] = -coords[0] + 3*coords[2] - 3*coords[4] + coords[6];
eqn[1] = 2*(coords[0] - 2*coords[2] + coords[4]);
eqn[0] = -coords[0] + coords[2];
int nr = QuadCurve2D.solveQuadratic(eqn, res);
/* Following code also correctly works in degenerate case of
* the quadratic equation (nr = -1) because we do not need
* splitting in this case.
*/
for (int i = 0; i < nr; i++) {
if (res[i] > 0 && res[i] < 1) {
params[cnt++] = res[i];
}
}
}
/* Simple check for monotonicity in Y before searching for the extreme
* points of the Y(t) function. We first check if the curve is
* monotonic in Y by seeing if all of the Y coordinates are strongly
* ordered.
*/
if ((coords[1] > coords[3] || coords[3] > coords[5] ||
coords[5] > coords[7]) &&
(coords[1] < coords[3] || coords[3] < coords[5] ||
coords[5] < coords[7]))
{
/* Searching for extreme points of the Y(t) function by solving
* dY(t)
* ----- = 0 equation
* dt
*/
eqn[2] = -coords[1] + 3*coords[3] - 3*coords[5] + coords[7];
eqn[1] = 2*(coords[1] - 2*coords[3] + coords[5]);
eqn[0] = -coords[1] + coords[3];
int nr = QuadCurve2D.solveQuadratic(eqn, res);
/* Following code also correctly works in degenerate case of
* the quadratic equation (nr = -1) because we do not need
* splitting in this case.
*/
for (int i = 0; i < nr; i++) {
if (res[i] > 0 && res[i] < 1) {
params[cnt++] = res[i];
}
}
}
if (cnt > 0) {
/* Sorting parameter values corresponding to the extreme points
* of the curve
*/
Arrays.sort(params, 0, cnt);
/* Processing obtained monotonic parts */
ProcessFirstMonotonicPartOfCubic(resVect, coords, params[0]);
for (int i = 1; i < cnt; i++) {
float param = params[i] - params[i-1];
if (param > 0) {
ProcessFirstMonotonicPartOfCubic(resVect, coords,
/* Scale parameter to match with rest of the curve */
(float)(param/(1f - params[i - 1])));
}
}
}
ProcessMonotonicCubic(resVect,coords);
}
/*
* Bite the piece of the cubic curve from start point till the point
* corresponding to the specified parameter then call ProcessCubic for the
* bitten part.
* Note: coords array will be changed
*/
private void ProcessFirstMonotonicPartOfCubic(
List resVector, float[] coords, float t)
{
float[] coords1 = new float[8];
float tx, ty;
coords1[0] = coords[0];
coords1[1] = coords[1];
tx = coords[2] + t*(coords[4] - coords[2]);
ty = coords[3] + t*(coords[5] - coords[3]);
coords1[2] = coords[0] + t*(coords[2] - coords[0]);
coords1[3] = coords[1] + t*(coords[3] - coords[1]);
coords1[4] = coords1[2] + t*(tx - coords1[2]);
coords1[5] = coords1[3] + t*(ty - coords1[3]);
coords[4] = coords[4] + t*(coords[6] - coords[4]);
coords[5] = coords[5] + t*(coords[7] - coords[5]);
coords[2] = tx + t*(coords[4] - tx);
coords[3] = ty + t*(coords[5] - ty);
coords[0]=coords1[6]=coords1[4] + t*(coords[2] - coords1[4]);
coords[1]=coords1[7]=coords1[5] + t*(coords[3] - coords1[5]);
ProcessMonotonicCubic(resVector, coords1);
}
}