All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.sun.javafx.geom.CubicCurve2D Maven / Gradle / Ivy

There is a newer version: 24-ea+15
Show newest version
/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.javafx.geom;

import java.util.Arrays;

import com.sun.javafx.geom.transform.BaseTransform;

/**
 * The CubicCurve2D class defines a cubic parametric curve
 * segment in {@code (x,y)} coordinate space.
 * 

* This class is only the abstract superclass for all objects which * store a 2D cubic curve segment. * The actual storage representation of the coordinates is left to * the subclass. * * @version 1.42, 05/05/07 */ public class CubicCurve2D extends Shape { /** * The X coordinate of the start point * of the cubic curve segment. */ public float x1; /** * The Y coordinate of the start point * of the cubic curve segment. */ public float y1; /** * The X coordinate of the first control point * of the cubic curve segment. */ public float ctrlx1; /** * The Y coordinate of the first control point * of the cubic curve segment. */ public float ctrly1; /** * The X coordinate of the second control point * of the cubic curve segment. */ public float ctrlx2; /** * The Y coordinate of the second control point * of the cubic curve segment. */ public float ctrly2; /** * The X coordinate of the end point * of the cubic curve segment. */ public float x2; /** * The Y coordinate of the end point * of the cubic curve segment. */ public float y2; /** * Constructs and initializes a CubicCurve with coordinates * (0, 0, 0, 0, 0, 0, 0, 0). */ public CubicCurve2D() { } /** * Constructs and initializes a {@code CubicCurve2D} from * the specified {@code float} coordinates. * * @param x1 the X coordinate for the start point * of the resulting {@code CubicCurve2D} * @param y1 the Y coordinate for the start point * of the resulting {@code CubicCurve2D} * @param ctrlx1 the X coordinate for the first control point * of the resulting {@code CubicCurve2D} * @param ctrly1 the Y coordinate for the first control point * of the resulting {@code CubicCurve2D} * @param ctrlx2 the X coordinate for the second control point * of the resulting {@code CubicCurve2D} * @param ctrly2 the Y coordinate for the second control point * of the resulting {@code CubicCurve2D} * @param x2 the X coordinate for the end point * of the resulting {@code CubicCurve2D} * @param y2 the Y coordinate for the end point * of the resulting {@code CubicCurve2D} */ public CubicCurve2D(float x1, float y1, float ctrlx1, float ctrly1, float ctrlx2, float ctrly2, float x2, float y2) { setCurve(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2); } /** * Sets the location of the end points and control points * of this curve to the specified {@code float} coordinates. * * @param x1 the X coordinate used to set the start point * of this {@code CubicCurve2D} * @param y1 the Y coordinate used to set the start point * of this {@code CubicCurve2D} * @param ctrlx1 the X coordinate used to set the first control point * of this {@code CubicCurve2D} * @param ctrly1 the Y coordinate used to set the first control point * of this {@code CubicCurve2D} * @param ctrlx2 the X coordinate used to set the second control point * of this {@code CubicCurve2D} * @param ctrly2 the Y coordinate used to set the second control point * of this {@code CubicCurve2D} * @param x2 the X coordinate used to set the end point * of this {@code CubicCurve2D} * @param y2 the Y coordinate used to set the end point * of this {@code CubicCurve2D} */ public void setCurve(float x1, float y1, float ctrlx1, float ctrly1, float ctrlx2, float ctrly2, float x2, float y2) { this.x1 = x1; this.y1 = y1; this.ctrlx1 = ctrlx1; this.ctrly1 = ctrly1; this.ctrlx2 = ctrlx2; this.ctrly2 = ctrly2; this.x2 = x2; this.y2 = y2; } /** * {@inheritDoc} */ public RectBounds getBounds() { float left = Math.min(Math.min(x1, x2), Math.min(ctrlx1, ctrlx2)); float top = Math.min(Math.min(y1, y2), Math.min(ctrly1, ctrly2)); float right = Math.max(Math.max(x1, x2), Math.max(ctrlx1, ctrlx2)); float bottom = Math.max(Math.max(y1, y2), Math.max(ctrly1, ctrly2)); return new RectBounds(left, top, right, bottom); } /** * Evaluates this cubic curve at the given parameter value, where * it is expected, but not required, that the parameter will be * between 0 and 1. 0 corresponds to the start point of the curve * and 1 corresponds to the end point of the curve. * @param t parameter value at which to evaluate the curve * @return a newly allocated Point2D containing the evaluation of * the curve at that parameter value */ public Point2D eval(float t) { Point2D result = new Point2D(); eval(t, result); return result; } /** * Evaluates this cubic curve at the given parameter value, where * it is expected, but not required, that the parameter will be * between 0 and 1. 0 corresponds to the start point of the curve * and 1 corresponds to the end point of the curve. * @param td parameter value at which to evaluate the curve * @param result Point2D in to which to store the evaluation of * the curve at that parameter value */ public void eval(float td, Point2D result) { result.setLocation(calcX(td), calcY(td)); } /** * Evaluates the derivative of this cubic curve at the given * parameter value, where it is expected, but not required, that * the parameter will be between 0 and 1. 0 corresponds to the * derivative at the start point of the curve and 1 corresponds to * the derivative at the end point of the curve. * @param t parameter value at which to compute the derivative of * the curve * @return a newly allocated Point2D containing the derivative of * the curve at that parameter value */ public Point2D evalDt(float t) { Point2D result = new Point2D(); evalDt(t, result); return result; } /** * Evaluates the derivative of this cubic curve at the given * parameter value, where it is expected, but not required, that * the parameter will be between 0 and 1. 0 corresponds to the * derivative at the start point of the curve and 1 corresponds to * the derivative at the end point of the curve. * @param t parameter value at which to compute the derivative of * the curve * @param result Point2D in to which to store the derivative of * the curve at that parameter value */ public void evalDt(float td, Point2D result) { float t = td; float u = 1 - t; float x = 3*((ctrlx1-x1)*u*u + 2*(ctrlx2-ctrlx1)*u*t + (x2-ctrlx2)*t*t); float y = 3*((ctrly1-y1)*u*u + 2*(ctrly2-ctrly1)*u*t + (y2-ctrly2)*t*t); result.setLocation(x, y); } /** * Sets the location of the end points and control points of this curve * to the double coordinates at the specified offset in the specified * array. * @param coords a double array containing coordinates * @param offset the index of coords from which to begin * setting the end points and control points of this curve * to the coordinates contained in coords */ public void setCurve(float[] coords, int offset) { setCurve(coords[offset + 0], coords[offset + 1], coords[offset + 2], coords[offset + 3], coords[offset + 4], coords[offset + 5], coords[offset + 6], coords[offset + 7]); } /** * Sets the location of the end points and control points of this curve * to the specified Point2D coordinates. * @param p1 the first specified Point2D used to set the * start point of this curve * @param cp1 the second specified Point2D used to set the * first control point of this curve * @param cp2 the third specified Point2D used to set the * second control point of this curve * @param p2 the fourth specified Point2D used to set the * end point of this curve */ public void setCurve(Point2D p1, Point2D cp1, Point2D cp2, Point2D p2) { setCurve(p1.x, p1.y, cp1.x, cp1.y, cp2.x, cp2.y, p2.x, p2.y); } /** * Sets the location of the end points and control points of this curve * to the coordinates of the Point2D objects at the specified * offset in the specified array. * @param pts an array of Point2D objects * @param offset the index of pts from which to begin setting * the end points and control points of this curve to the * points contained in pts */ public void setCurve(Point2D[] pts, int offset) { setCurve(pts[offset + 0].x, pts[offset + 0].y, pts[offset + 1].x, pts[offset + 1].y, pts[offset + 2].x, pts[offset + 2].y, pts[offset + 3].x, pts[offset + 3].y); } /** * Sets the location of the end points and control points of this curve * to the same as those in the specified CubicCurve2D. * @param c the specified CubicCurve2D */ public void setCurve(CubicCurve2D c) { setCurve(c.x1, c.y1, c.ctrlx1, c.ctrly1, c.ctrlx2, c.ctrly2, c.x2, c.y2); } /** * Returns the square of the flatness of the cubic curve specified * by the indicated control points. The flatness is the maximum distance * of a control point from the line connecting the end points. * * @param x1 the X coordinate that specifies the start point * of a {@code CubicCurve2D} * @param y1 the Y coordinate that specifies the start point * of a {@code CubicCurve2D} * @param ctrlx1 the X coordinate that specifies the first control point * of a {@code CubicCurve2D} * @param ctrly1 the Y coordinate that specifies the first control point * of a {@code CubicCurve2D} * @param ctrlx2 the X coordinate that specifies the second control point * of a {@code CubicCurve2D} * @param ctrly2 the Y coordinate that specifies the second control point * of a {@code CubicCurve2D} * @param x2 the X coordinate that specifies the end point * of a {@code CubicCurve2D} * @param y2 the Y coordinate that specifies the end point * of a {@code CubicCurve2D} * @return the square of the flatness of the {@code CubicCurve2D} * represented by the specified coordinates. */ public static float getFlatnessSq(float x1, float y1, float ctrlx1, float ctrly1, float ctrlx2, float ctrly2, float x2, float y2) { return Math.max(Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx1, ctrly1), Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx2, ctrly2)); } /** * Returns the flatness of the cubic curve specified * by the indicated control points. The flatness is the maximum distance * of a control point from the line connecting the end points. * * @param x1 the X coordinate that specifies the start point * of a {@code CubicCurve2D} * @param y1 the Y coordinate that specifies the start point * of a {@code CubicCurve2D} * @param ctrlx1 the X coordinate that specifies the first control point * of a {@code CubicCurve2D} * @param ctrly1 the Y coordinate that specifies the first control point * of a {@code CubicCurve2D} * @param ctrlx2 the X coordinate that specifies the second control point * of a {@code CubicCurve2D} * @param ctrly2 the Y coordinate that specifies the second control point * of a {@code CubicCurve2D} * @param x2 the X coordinate that specifies the end point * of a {@code CubicCurve2D} * @param y2 the Y coordinate that specifies the end point * of a {@code CubicCurve2D} * @return the flatness of the {@code CubicCurve2D} * represented by the specified coordinates. */ public static float getFlatness(float x1, float y1, float ctrlx1, float ctrly1, float ctrlx2, float ctrly2, float x2, float y2) { return (float) Math.sqrt(getFlatnessSq(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2)); } /** * Returns the square of the flatness of the cubic curve specified * by the control points stored in the indicated array at the * indicated index. The flatness is the maximum distance * of a control point from the line connecting the end points. * @param coords an array containing coordinates * @param offset the index of coords from which to begin * getting the end points and control points of the curve * @return the square of the flatness of the CubicCurve2D * specified by the coordinates in coords at * the specified offset. */ public static float getFlatnessSq(float coords[], int offset) { return getFlatnessSq(coords[offset + 0], coords[offset + 1], coords[offset + 2], coords[offset + 3], coords[offset + 4], coords[offset + 5], coords[offset + 6], coords[offset + 7]); } /** * Returns the flatness of the cubic curve specified * by the control points stored in the indicated array at the * indicated index. The flatness is the maximum distance * of a control point from the line connecting the end points. * @param coords an array containing coordinates * @param offset the index of coords from which to begin * getting the end points and control points of the curve * @return the flatness of the CubicCurve2D * specified by the coordinates in coords at * the specified offset. */ public static float getFlatness(float coords[], int offset) { return getFlatness(coords[offset + 0], coords[offset + 1], coords[offset + 2], coords[offset + 3], coords[offset + 4], coords[offset + 5], coords[offset + 6], coords[offset + 7]); } /** * Returns the square of the flatness of this curve. The flatness is the * maximum distance of a control point from the line connecting the * end points. * @return the square of the flatness of this curve. */ public float getFlatnessSq() { return getFlatnessSq(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2); } /** * Returns the flatness of this curve. The flatness is the * maximum distance of a control point from the line connecting the * end points. * @return the flatness of this curve. */ public float getFlatness() { return getFlatness(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2); } /** * Subdivides this cubic curve at the given parameter value * (expected to be between 0 and 1) and stores the resulting two * subdivided curves into the left and right curve parameters. * Either or both of the left and right objects may be the same as * this object or null. * @param t the parameter value at which to subdivide the curve * @param left the cubic curve object for storing for the left or * first portion of the subdivided curve * @param right the cubic curve object for storing for the right or * second portion of the subdivided curve */ public void subdivide(float t, CubicCurve2D left, CubicCurve2D right) { if ((left == null) && (right == null)) return; float npx = calcX(t); float npy = calcY(t); float x1 = this.x1; float y1 = this.y1; float c1x = this.ctrlx1; float c1y = this.ctrly1; float c2x = this.ctrlx2; float c2y = this.ctrly2; float x2 = this.x2; float y2 = this.y2; float u = 1-t; float hx = u*c1x+t*c2x; float hy = u*c1y+t*c2y; if (left != null) { float lx1 = x1; float ly1 = y1; float lc1x = u*x1+t*c1x; float lc1y = u*y1+t*c1y; float lc2x = u*lc1x+t*hx; float lc2y = u*lc1y+t*hy; float lx2 = npx; float ly2 = npy; left.setCurve(lx1, ly1, lc1x, lc1y, lc2x, lc2y, lx2, ly2); } if (right != null) { float rx1 = npx; float ry1 = npy; float rc2x = u*c2x+t*x2; float rc2y = u*c2y+t*y2; float rc1x = u*hx+t*rc2x; float rc1y = u*hy+t*rc2y; float rx2 = x2; float ry2 = y2; right.setCurve(rx1, ry1, rc1x, rc1y, rc2x, rc2y, rx2, ry2); } } /** * Subdivides this cubic curve and stores the resulting two * subdivided curves into the left and right curve parameters. * Either or both of the left and right objects may be the same * as this object or null. * @param left the cubic curve object for storing for the left or * first half of the subdivided curve * @param right the cubic curve object for storing for the right or * second half of the subdivided curve */ public void subdivide(CubicCurve2D left, CubicCurve2D right) { subdivide(this, left, right); } /** * Subdivides the cubic curve specified by the src parameter * and stores the resulting two subdivided curves into the * left and right curve parameters. * Either or both of the left and right objects * may be the same as the src object or null. * @param src the cubic curve to be subdivided * @param left the cubic curve object for storing the left or * first half of the subdivided curve * @param right the cubic curve object for storing the right or * second half of the subdivided curve */ public static void subdivide(CubicCurve2D src, CubicCurve2D left, CubicCurve2D right) { float x1 = src.x1; float y1 = src.y1; float ctrlx1 = src.ctrlx1; float ctrly1 = src.ctrly1; float ctrlx2 = src.ctrlx2; float ctrly2 = src.ctrly2; float x2 = src.x2; float y2 = src.y2; float centerx = (ctrlx1 + ctrlx2) / 2f; float centery = (ctrly1 + ctrly2) / 2f; ctrlx1 = (x1 + ctrlx1) / 2f; ctrly1 = (y1 + ctrly1) / 2f; ctrlx2 = (x2 + ctrlx2) / 2f; ctrly2 = (y2 + ctrly2) / 2f; float ctrlx12 = (ctrlx1 + centerx) / 2f; float ctrly12 = (ctrly1 + centery) / 2f; float ctrlx21 = (ctrlx2 + centerx) / 2f; float ctrly21 = (ctrly2 + centery) / 2f; centerx = (ctrlx12 + ctrlx21) / 2f; centery = (ctrly12 + ctrly21) / 2f; if (left != null) { left.setCurve(x1, y1, ctrlx1, ctrly1, ctrlx12, ctrly12, centerx, centery); } if (right != null) { right.setCurve(centerx, centery, ctrlx21, ctrly21, ctrlx2, ctrly2, x2, y2); } } /** * Subdivides the cubic curve specified by the coordinates * stored in the src array at indices srcoff * through (srcoff + 7) and stores the * resulting two subdivided curves into the two result arrays at the * corresponding indices. * Either or both of the left and right * arrays may be null or a reference to the same array * as the src array. * Note that the last point in the first subdivided curve is the * same as the first point in the second subdivided curve. Thus, * it is possible to pass the same array for left * and right and to use offsets, such as rightoff * equals (leftoff + 6), in order * to avoid allocating extra storage for this common point. * @param src the array holding the coordinates for the source curve * @param srcoff the offset into the array of the beginning of the * the 6 source coordinates * @param left the array for storing the coordinates for the first * half of the subdivided curve * @param leftoff the offset into the array of the beginning of the * the 6 left coordinates * @param right the array for storing the coordinates for the second * half of the subdivided curve * @param rightoff the offset into the array of the beginning of the * the 6 right coordinates */ public static void subdivide(float src[], int srcoff, float left[], int leftoff, float right[], int rightoff) { float x1 = src[srcoff + 0]; float y1 = src[srcoff + 1]; float ctrlx1 = src[srcoff + 2]; float ctrly1 = src[srcoff + 3]; float ctrlx2 = src[srcoff + 4]; float ctrly2 = src[srcoff + 5]; float x2 = src[srcoff + 6]; float y2 = src[srcoff + 7]; if (left != null) { left[leftoff + 0] = x1; left[leftoff + 1] = y1; } if (right != null) { right[rightoff + 6] = x2; right[rightoff + 7] = y2; } x1 = (x1 + ctrlx1) / 2f; y1 = (y1 + ctrly1) / 2f; x2 = (x2 + ctrlx2) / 2f; y2 = (y2 + ctrly2) / 2f; float centerx = (ctrlx1 + ctrlx2) / 2f; float centery = (ctrly1 + ctrly2) / 2f; ctrlx1 = (x1 + centerx) / 2f; ctrly1 = (y1 + centery) / 2f; ctrlx2 = (x2 + centerx) / 2f; ctrly2 = (y2 + centery) / 2f; centerx = (ctrlx1 + ctrlx2) / 2f; centery = (ctrly1 + ctrly2) / 2f; if (left != null) { left[leftoff + 2] = x1; left[leftoff + 3] = y1; left[leftoff + 4] = ctrlx1; left[leftoff + 5] = ctrly1; left[leftoff + 6] = centerx; left[leftoff + 7] = centery; } if (right != null) { right[rightoff + 0] = centerx; right[rightoff + 1] = centery; right[rightoff + 2] = ctrlx2; right[rightoff + 3] = ctrly2; right[rightoff + 4] = x2; right[rightoff + 5] = y2; } } /** * Solves the cubic whose coefficients are in the eqn * array and places the non-complex roots back into the same array, * returning the number of roots. The solved cubic is represented * by the equation: *

     *     eqn = {c, b, a, d}
     *     dx^3 + ax^2 + bx + c = 0
     * 
* A return value of -1 is used to distinguish a constant equation * that might be always 0 or never 0 from an equation that has no * zeroes. * @param eqn an array containing coefficients for a cubic * @return the number of roots, or -1 if the equation is a constant. */ public static int solveCubic(float eqn[]) { return solveCubic(eqn, eqn); } /** * Solve the cubic whose coefficients are in the eqn * array and place the non-complex roots into the res * array, returning the number of roots. * The cubic solved is represented by the equation: * eqn = {c, b, a, d} * dx^3 + ax^2 + bx + c = 0 * A return value of -1 is used to distinguish a constant equation, * which may be always 0 or never 0, from an equation which has no * zeroes. * @param eqn the specified array of coefficients to use to solve * the cubic equation * @param res the array that contains the non-complex roots * resulting from the solution of the cubic equation * @return the number of roots, or -1 if the equation is a constant */ public static int solveCubic(float eqn[], float res[]) { // From Numerical Recipes, 5.6, Quadratic and Cubic Equations float d = eqn[3]; if (d == 0f) { // The cubic has degenerated to quadratic (or line or ...). return QuadCurve2D.solveQuadratic(eqn, res); } float a = eqn[2] / d; float b = eqn[1] / d; float c = eqn[0] / d; int roots = 0; float Q = (a * a - 3f * b) / 9f; float R = (2f * a * a * a - 9f * a * b + 27f * c) / 54f; float R2 = R * R; float Q3 = Q * Q * Q; a = a / 3f; if (R2 < Q3) { float theta = (float) Math.acos(R / Math.sqrt(Q3)); Q = (float) (-2f * Math.sqrt(Q)); if (res == eqn) { // Copy the eqn so that we don't clobber it with the // roots. This is needed so that fixRoots can do its // work with the original equation. eqn = new float[4]; System.arraycopy(res, 0, eqn, 0, 4); } res[roots++] = (float) (Q * Math.cos(theta / 3f) - a); res[roots++] = (float) (Q * Math.cos((theta + Math.PI * 2f)/ 3f) - a); res[roots++] = (float) (Q * Math.cos((theta - Math.PI * 2f)/ 3f) - a); fixRoots(res, eqn); } else { boolean neg = (R < 0f); float S = (float) Math.sqrt(R2 - Q3); if (neg) { R = -R; } float A = (float) Math.pow(R + S, 1f / 3f); if (!neg) { A = -A; } float B = (A == 0f) ? 0f : (Q / A); res[roots++] = (A + B) - a; } return roots; } /* * This pruning step is necessary since solveCubic uses the * cosine function to calculate the roots when there are 3 * of them. Since the cosine method can have an error of * +/- 1E-14 we need to make sure that we don't make any * bad decisions due to an error. * * If the root is not near one of the endpoints, then we will * only have a slight inaccuracy in calculating the x intercept * which will only cause a slightly wrong answer for some * points very close to the curve. While the results in that * case are not as accurate as they could be, they are not * disastrously inaccurate either. * * On the other hand, if the error happens near one end of * the curve, then our processing to reject values outside * of the t=[0,1] range will fail and the results of that * failure will be disastrous since for an entire horizontal * range of test points, we will either overcount or undercount * the crossings and get a wrong answer for all of them, even * when they are clearly and obviously inside or outside the * curve. * * To work around this problem, we try a couple of Newton-Raphson * iterations to see if the true root is closer to the endpoint * or further away. If it is further away, then we can stop * since we know we are on the right side of the endpoint. If * we change direction, then either we are now being dragged away * from the endpoint in which case the first condition will cause * us to stop, or we have passed the endpoint and are headed back. * In the second case, we simply evaluate the slope at the * endpoint itself and place ourselves on the appropriate side * of it or on it depending on that result. */ private static void fixRoots(float res[], float eqn[]) { final float EPSILON = (float) 1E-5; // eek, Rich may have botched this for (int i = 0; i < 3; i++) { float t = res[i]; if (Math.abs(t) < EPSILON) { res[i] = findZero(t, 0, eqn); } else if (Math.abs(t - 1) < EPSILON) { res[i] = findZero(t, 1, eqn); } } } private static float solveEqn(float eqn[], int order, float t) { float v = eqn[order]; while (--order >= 0) { v = v * t + eqn[order]; } return v; } private static float findZero(float t, float target, float eqn[]) { float slopeqn[] = {eqn[1], 2*eqn[2], 3*eqn[3]}; float slope; float origdelta = 0f; float origt = t; while (true) { slope = solveEqn(slopeqn, 2, t); if (slope == 0f) { // At a local minima - must return return t; } float y = solveEqn(eqn, 3, t); if (y == 0f) { // Found it! - return it return t; } // assert(slope != 0 && y != 0); float delta = - (y / slope); // assert(delta != 0); if (origdelta == 0f) { origdelta = delta; } if (t < target) { if (delta < 0f) return t; } else if (t > target) { if (delta > 0f) return t; } else { /* t == target */ return (delta > 0f ? (target + java.lang.Float.MIN_VALUE) : (target - java.lang.Float.MIN_VALUE)); } float newt = t + delta; if (t == newt) { // The deltas are so small that we aren't moving... return t; } if (delta * origdelta < 0) { // We have reversed our path. int tag = (origt < t ? getTag(target, origt, t) : getTag(target, t, origt)); if (tag != INSIDE) { // Local minima found away from target - return the middle return (origt + t) / 2; } // Local minima somewhere near target - move to target // and let the slope determine the resulting t. t = target; } else { t = newt; } } } /** * {@inheritDoc} */ public boolean contains(float x, float y) { if (!(x * 0f + y * 0f == 0f)) { /* Either x or y was infinite or NaN. * A NaN always produces a negative response to any test * and Infinity values cannot be "inside" any path so * they should return false as well. */ return false; } // We count the "Y" crossings to determine if the point is // inside the curve bounded by its closing line. int crossings = (Shape.pointCrossingsForLine(x, y, x1, y1, x2, y2) + Shape.pointCrossingsForCubic(x, y, x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2, 0)); return ((crossings & 1) == 1); } /** * {@inheritDoc} */ public boolean contains(Point2D p) { return contains(p.x, p.y); } /* * Fill an array with the coefficients of the parametric equation * in t, ready for solving against val with solveCubic. * We currently have: *
     *   val = P(t) = C1(1-t)^3 + 3CP1 t(1-t)^2 + 3CP2 t^2(1-t) + C2 t^3
     *              = C1 - 3C1t + 3C1t^2 - C1t^3 +
     *                3CP1t - 6CP1t^2 + 3CP1t^3 +
     *                3CP2t^2 - 3CP2t^3 +
     *                C2t^3
     *            0 = (C1 - val) +
     *                (3CP1 - 3C1) t +
     *                (3C1 - 6CP1 + 3CP2) t^2 +
     *                (C2 - 3CP2 + 3CP1 - C1) t^3
     *            0 = C + Bt + At^2 + Dt^3
     *     C = C1 - val
     *     B = 3*CP1 - 3*C1
     *     A = 3*CP2 - 6*CP1 + 3*C1
     *     D = C2 - 3*CP2 + 3*CP1 - C1
     * 
*/ private static void fillEqn(float eqn[], float val, float c1, float cp1, float cp2, float c2) { eqn[0] = c1 - val; eqn[1] = (cp1 - c1) * 3f; eqn[2] = (cp2 - cp1 - cp1 + c1) * 3f; eqn[3] = c2 + (cp1 - cp2) * 3f - c1; } /* * Evaluate the t values in the first num slots of the vals[] array * and place the evaluated values back into the same array. Only * evaluate t values that are within the range <0, 1>, including * the 0 and 1 ends of the range iff the include0 or include1 * booleans are true. If an "inflection" equation is handed in, * then any points which represent a point of inflection for that * cubic equation are also ignored. */ private static int evalCubic(float vals[], int num, boolean include0, boolean include1, float inflect[], float c1, float cp1, float cp2, float c2) { int j = 0; for (int i = 0; i < num; i++) { float t = vals[i]; if ((include0 ? t >= 0 : t > 0) && (include1 ? t <= 1 : t < 1) && (inflect == null || inflect[1] + (2*inflect[2] + 3*inflect[3]*t)*t != 0)) { float u = 1 - t; vals[j++] = c1*u*u*u + 3*cp1*t*u*u + 3*cp2*t*t*u + c2*t*t*t; } } return j; } private static final int BELOW = -2; private static final int LOWEDGE = -1; private static final int INSIDE = 0; private static final int HIGHEDGE = 1; private static final int ABOVE = 2; /* * Determine where coord lies with respect to the range from * low to high. It is assumed that low <= high. The return * value is one of the 5 values BELOW, LOWEDGE, INSIDE, HIGHEDGE, * or ABOVE. */ private static int getTag(float coord, float low, float high) { if (coord <= low) { return (coord < low ? BELOW : LOWEDGE); } if (coord >= high) { return (coord > high ? ABOVE : HIGHEDGE); } return INSIDE; } /* * Determine if the pttag represents a coordinate that is already * in its test range, or is on the border with either of the two * opttags representing another coordinate that is "towards the * inside" of that test range. In other words, are either of the * two "opt" points "drawing the pt inward"? */ private static boolean inwards(int pttag, int opt1tag, int opt2tag) { switch (pttag) { case BELOW: case ABOVE: default: return false; case LOWEDGE: return (opt1tag >= INSIDE || opt2tag >= INSIDE); case INSIDE: return true; case HIGHEDGE: return (opt1tag <= INSIDE || opt2tag <= INSIDE); } } /** * {@inheritDoc} */ public boolean intersects(float x, float y, float w, float h) { // Trivially reject non-existant rectangles if (w <= 0 || h <= 0) { return false; } // Trivially accept if either endpoint is inside the rectangle // (not on its border since it may end there and not go inside) // Record where they lie with respect to the rectangle. // -1 => left, 0 => inside, 1 => right float x1 = this.x1; float y1 = this.y1; int x1tag = getTag(x1, x, x + w); int y1tag = getTag(y1, y, y + h); if (x1tag == INSIDE && y1tag == INSIDE) { return true; } float x2 = this.x2; float y2 = this.y2; int x2tag = getTag(x2, x, x + w); int y2tag = getTag(y2, y, y + h); if (x2tag == INSIDE && y2tag == INSIDE) { return true; } float ctrlx1 = this.ctrlx1; float ctrly1 = this.ctrly1; float ctrlx2 = this.ctrlx2; float ctrly2 = this.ctrly2; int ctrlx1tag = getTag(ctrlx1, x, x + w); int ctrly1tag = getTag(ctrly1, y, y + h); int ctrlx2tag = getTag(ctrlx2, x, x + w); int ctrly2tag = getTag(ctrly2, y, y + h); // Trivially reject if all points are entirely to one side of // the rectangle. if (x1tag < INSIDE && x2tag < INSIDE && ctrlx1tag < INSIDE && ctrlx2tag < INSIDE) { return false; // All points left } if (y1tag < INSIDE && y2tag < INSIDE && ctrly1tag < INSIDE && ctrly2tag < INSIDE) { return false; // All points above } if (x1tag > INSIDE && x2tag > INSIDE && ctrlx1tag > INSIDE && ctrlx2tag > INSIDE) { return false; // All points right } if (y1tag > INSIDE && y2tag > INSIDE && ctrly1tag > INSIDE && ctrly2tag > INSIDE) { return false; // All points below } // Test for endpoints on the edge where either the segment // or the curve is headed "inwards" from them // Note: These tests are a superset of the fast endpoint tests // above and thus repeat those tests, but take more time // and cover more cases if (inwards(x1tag, x2tag, ctrlx1tag) && inwards(y1tag, y2tag, ctrly1tag)) { // First endpoint on border with either edge moving inside return true; } if (inwards(x2tag, x1tag, ctrlx2tag) && inwards(y2tag, y1tag, ctrly2tag)) { // Second endpoint on border with either edge moving inside return true; } // Trivially accept if endpoints span directly across the rectangle boolean xoverlap = (x1tag * x2tag <= 0); boolean yoverlap = (y1tag * y2tag <= 0); if (x1tag == INSIDE && x2tag == INSIDE && yoverlap) { return true; } if (y1tag == INSIDE && y2tag == INSIDE && xoverlap) { return true; } // We now know that both endpoints are outside the rectangle // but the 4 points are not all on one side of the rectangle. // Therefore the curve cannot be contained inside the rectangle, // but the rectangle might be contained inside the curve, or // the curve might intersect the boundary of the rectangle. float[] eqn = new float[4]; float[] res = new float[4]; if (!yoverlap) { // Both y coordinates for the closing segment are above or // below the rectangle which means that we can only intersect // if the curve crosses the top (or bottom) of the rectangle // in more than one place and if those crossing locations // span the horizontal range of the rectangle. fillEqn(eqn, (y1tag < INSIDE ? y : y+h), y1, ctrly1, ctrly2, y2); int num = solveCubic(eqn, res); num = evalCubic(res, num, true, true, null, x1, ctrlx1, ctrlx2, x2); // odd counts imply the crossing was out of [0,1] bounds // otherwise there is no way for that part of the curve to // "return" to meet its endpoint return (num == 2 && getTag(res[0], x, x+w) * getTag(res[1], x, x+w) <= 0); } // Y ranges overlap. Now we examine the X ranges if (!xoverlap) { // Both x coordinates for the closing segment are left of // or right of the rectangle which means that we can only // intersect if the curve crosses the left (or right) edge // of the rectangle in more than one place and if those // crossing locations span the vertical range of the rectangle. fillEqn(eqn, (x1tag < INSIDE ? x : x+w), x1, ctrlx1, ctrlx2, x2); int num = solveCubic(eqn, res); num = evalCubic(res, num, true, true, null, y1, ctrly1, ctrly2, y2); // odd counts imply the crossing was out of [0,1] bounds // otherwise there is no way for that part of the curve to // "return" to meet its endpoint return (num == 2 && getTag(res[0], y, y+h) * getTag(res[1], y, y+h) <= 0); } // The X and Y ranges of the endpoints overlap the X and Y // ranges of the rectangle, now find out how the endpoint // line segment intersects the Y range of the rectangle float dx = x2 - x1; float dy = y2 - y1; float k = y2 * x1 - x2 * y1; int c1tag, c2tag; if (y1tag == INSIDE) { c1tag = x1tag; } else { c1tag = getTag((k + dx * (y1tag < INSIDE ? y : y+h)) / dy, x, x+w); } if (y2tag == INSIDE) { c2tag = x2tag; } else { c2tag = getTag((k + dx * (y2tag < INSIDE ? y : y+h)) / dy, x, x+w); } // If the part of the line segment that intersects the Y range // of the rectangle crosses it horizontally - trivially accept if (c1tag * c2tag <= 0) { return true; } // Now we know that both the X and Y ranges intersect and that // the endpoint line segment does not directly cross the rectangle. // // We can almost treat this case like one of the cases above // where both endpoints are to one side, except that we may // get one or three intersections of the curve with the vertical // side of the rectangle. This is because the endpoint segment // accounts for the other intersection in an even pairing. Thus, // with the endpoint crossing we end up with 2 or 4 total crossings. // // (Remember there is overlap in both the X and Y ranges which // means that the segment itself must cross at least one vertical // edge of the rectangle - in particular, the "near vertical side" // - leaving an odd number of intersections for the curve.) // // Now we calculate the y tags of all the intersections on the // "near vertical side" of the rectangle. We will have one with // the endpoint segment, and one or three with the curve. If // any pair of those vertical intersections overlap the Y range // of the rectangle, we have an intersection. Otherwise, we don't. // c1tag = vertical intersection class of the endpoint segment // // Choose the y tag of the endpoint that was not on the same // side of the rectangle as the subsegment calculated above. // Note that we can "steal" the existing Y tag of that endpoint // since it will be provably the same as the vertical intersection. c1tag = ((c1tag * x1tag <= 0) ? y1tag : y2tag); // Now we have to calculate an array of solutions of the curve // with the "near vertical side" of the rectangle. Then we // need to sort the tags and do a pairwise range test to see // if either of the pairs of crossings spans the Y range of // the rectangle. // // Note that the c2tag can still tell us which vertical edge // to test against. fillEqn(eqn, (c2tag < INSIDE ? x : x+w), x1, ctrlx1, ctrlx2, x2); int num = solveCubic(eqn, res); num = evalCubic(res, num, true, true, null, y1, ctrly1, ctrly2, y2); // Now put all of the tags into a bucket and sort them. There // is an intersection iff one of the pairs of tags "spans" the // Y range of the rectangle. int tags[] = new int[num+1]; for (int i = 0; i < num; i++) { tags[i] = getTag(res[i], y, y+h); } tags[num] = c1tag; Arrays.sort(tags); return ((num >= 1 && tags[0] * tags[1] <= 0) || (num >= 3 && tags[2] * tags[3] <= 0)); } /** * {@inheritDoc} */ public boolean contains(float x, float y, float w, float h) { if (w <= 0 || h <= 0) { return false; } // Assertion: Cubic curves closed by connecting their // endpoints form either one or two convex halves with // the closing line segment as an edge of both sides. if (!(contains(x, y) && contains(x + w, y) && contains(x + w, y + h) && contains(x, y + h))) { return false; } // Either the rectangle is entirely inside one of the convex // halves or it crosses from one to the other, in which case // it must intersect the closing line segment. return !Shape.intersectsLine(x, y, w, h, x1, y1, x2, y2); } /** * Returns an iteration object that defines the boundary of the * shape. * The iterator for this class is not multi-threaded safe, * which means that this CubicCurve2D class does not * guarantee that modifications to the geometry of this * CubicCurve2D object do not affect any iterations of * that geometry that are already in process. * @param tx an optional BaseTransform to be applied to the * coordinates as they are returned in the iteration, or null * if untransformed coordinates are desired * @return the PathIterator object that returns the * geometry of the outline of this CubicCurve2D, one * segment at a time. */ public PathIterator getPathIterator(BaseTransform tx) { return new CubicIterator(this, tx); } /** * Return an iteration object that defines the boundary of the * flattened shape. * The iterator for this class is not multi-threaded safe, * which means that this CubicCurve2D class does not * guarantee that modifications to the geometry of this * CubicCurve2D object do not affect any iterations of * that geometry that are already in process. * @param tx an optional BaseTransform to be applied to the * coordinates as they are returned in the iteration, or null * if untransformed coordinates are desired * @param flatness the maximum amount that the control points * for a given curve can vary from colinear before a subdivided * curve is replaced by a straight line connecting the end points * @return the PathIterator object that returns the * geometry of the outline of this CubicCurve2D, * one segment at a time. */ public PathIterator getPathIterator(BaseTransform tx, float flatness) { return new FlatteningPathIterator(getPathIterator(tx), flatness); } @Override public CubicCurve2D copy() { return new CubicCurve2D(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2); } @Override public int hashCode() { int bits = java.lang.Float.floatToIntBits(x1); bits += java.lang.Float.floatToIntBits(y1) * 37; bits += java.lang.Float.floatToIntBits(x2) * 43; bits += java.lang.Float.floatToIntBits(y2) * 47; bits += java.lang.Float.floatToIntBits(ctrlx1) * 53; bits += java.lang.Float.floatToIntBits(ctrly1) * 59; bits += java.lang.Float.floatToIntBits(ctrlx2) * 61; bits += java.lang.Float.floatToIntBits(ctrly2) * 101; return bits; } @Override public boolean equals(Object obj) { if (obj == this) { return true; } if (obj instanceof CubicCurve2D) { CubicCurve2D curve = (CubicCurve2D) obj; return ((x1 == curve.x1) && (y1 == curve.y1) && (x2 == curve.x2) && (y2 == curve.y2) && (ctrlx1 == curve.ctrlx1) && (ctrly1 == curve.ctrly1) && (ctrlx2 == curve.ctrlx2) && (ctrly2 == curve.ctrly2)); } return false; } private float calcX(final float t) { final float u = 1 - t; return (u*u*u*x1 + 3*(t*u*u*ctrlx1 + t*t*u*ctrlx2) + t*t*t*x2); } private float calcY(final float t) { final float u = 1 - t; return (u*u*u*y1 + 3*(t*u*u*ctrly1 + t*t*u*ctrly2) + t*t*t*y2); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy