All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.sun.javafx.geom.Path2D Maven / Gradle / Ivy

There is a newer version: 24-ea+15
Show newest version
/*
 * Copyright (c) 2006, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.javafx.geom;

import com.sun.javafx.geom.transform.BaseTransform;
import java.util.Arrays;

/**
 * The {@code Path2D} class provides a simple, yet flexible
 * shape which represents an arbitrary geometric path.
 * It can fully represent any path which can be iterated by the
 * {@link PathIterator} interface including all of its segment
 * types and winding rules and it implements all of the
 * basic hit testing methods of the {@link Shape} interface.
 * 

* Use {@link Path2D} when dealing with data that can be represented * and used with floating point precision. *

* {@code Path2D} provides exactly those facilities required for * basic construction and management of a geometric path and * implementation of the above interfaces with little added * interpretation. * If it is useful to manipulate the interiors of closed * geometric shapes beyond simple hit testing then the * {@link Area} class provides additional capabilities * specifically targeted at closed figures. * While both classes nominally implement the {@code Shape} * interface, they differ in purpose and together they provide * two useful views of a geometric shape where {@code Path2D} * deals primarily with a trajectory formed by path segments * and {@code Area} deals more with interpretation and manipulation * of enclosed regions of 2D geometric space. *

* The {@link PathIterator} interface has more detailed descriptions * of the types of segments that make up a path and the winding rules * that control how to determine which regions are inside or outside * the path. * * @version 1.10, 05/05/07 */ public class Path2D extends Shape implements PathConsumer2D { static final int curvecoords[] = {2, 2, 4, 6, 0}; public enum CornerPrefix { CORNER_ONLY, MOVE_THEN_CORNER, LINE_THEN_CORNER } /** * An even-odd winding rule for determining the interior of * a path. * * @see PathIterator#WIND_EVEN_ODD */ public static final int WIND_EVEN_ODD = PathIterator.WIND_EVEN_ODD; /** * A non-zero winding rule for determining the interior of a * path. * * @see PathIterator#WIND_NON_ZERO */ public static final int WIND_NON_ZERO = PathIterator.WIND_NON_ZERO; // For code simplicity, copy these constants to our namespace // and cast them to byte constants for easy storage. private static final byte SEG_MOVETO = (byte) PathIterator.SEG_MOVETO; private static final byte SEG_LINETO = (byte) PathIterator.SEG_LINETO; private static final byte SEG_QUADTO = (byte) PathIterator.SEG_QUADTO; private static final byte SEG_CUBICTO = (byte) PathIterator.SEG_CUBICTO; private static final byte SEG_CLOSE = (byte) PathIterator.SEG_CLOSE; byte[] pointTypes; int numTypes; int numCoords; int windingRule; static final int INIT_SIZE = 20; static final int EXPAND_MAX = 500; static final int EXPAND_MAX_COORDS = EXPAND_MAX * 2; float floatCoords[]; float moveX, moveY; float prevX, prevY; float currX, currY; /** * Constructs a new empty single precision {@code Path2D} object * with a default winding rule of {@link #WIND_NON_ZERO}. */ public Path2D() { this(WIND_NON_ZERO, INIT_SIZE); } /** * Constructs a new empty single precision {@code Path2D} object * with the specified winding rule to control operations that * require the interior of the path to be defined. * * @param rule the winding rule * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO */ public Path2D(int rule) { this(rule, INIT_SIZE); } /** * Constructs a new empty single precision {@code Path2D} object * with the specified winding rule and the specified initial * capacity to store path segments. * This number is an initial guess as to how many path segments * will be added to the path, but the storage is expanded as * needed to store whatever path segments are added. * * @param rule the winding rule * @param initialCapacity the estimate for the number of path segments * in the path * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO */ public Path2D(int rule, int initialCapacity) { setWindingRule(rule); this.pointTypes = new byte[initialCapacity]; floatCoords = new float[initialCapacity * 2]; } /** * Constructs a new single precision {@code Path2D} object * from an arbitrary {@link Shape} object. * All of the initial geometry and the winding rule for this path are * taken from the specified {@code Shape} object. * * @param s the specified {@code Shape} object */ public Path2D(Shape s) { this(s, null); } /** * Constructs a new single precision {@code Path2D} object * from an arbitrary {@link Shape} object, transformed by an * {@link BaseTransform} object. * All of the initial geometry and the winding rule for this path are * taken from the specified {@code Shape} object and transformed * by the specified {@code BaseTransform} object. * * @param s the specified {@code Shape} object * @param tx the specified {@code BaseTransform} object */ public Path2D(Shape s, BaseTransform tx) { if (s instanceof Path2D) { Path2D p2d = (Path2D) s; setWindingRule(p2d.windingRule); this.numTypes = p2d.numTypes; this.pointTypes = Arrays.copyOf(p2d.pointTypes, numTypes); this.numCoords = p2d.numCoords; if (tx == null || tx.isIdentity()) { this.floatCoords = Arrays.copyOf(p2d.floatCoords, numCoords); this.moveX = p2d.moveX; this.moveY = p2d.moveY; this.prevX = p2d.prevX; this.prevY = p2d.prevY; this.currX = p2d.currX; this.currY = p2d.currY; } else { this.floatCoords = new float[numCoords + 6]; tx.transform(p2d.floatCoords, 0, this.floatCoords, 0, numCoords / 2); floatCoords[numCoords + 0] = moveX; floatCoords[numCoords + 1] = moveY; floatCoords[numCoords + 2] = prevX; floatCoords[numCoords + 3] = prevY; floatCoords[numCoords + 4] = currX; floatCoords[numCoords + 5] = currY; tx.transform(this.floatCoords, numCoords, this.floatCoords, numCoords, 3); moveX = floatCoords[numCoords + 0]; moveY = floatCoords[numCoords + 1]; prevX = floatCoords[numCoords + 2]; prevY = floatCoords[numCoords + 3]; currX = floatCoords[numCoords + 4]; currY = floatCoords[numCoords + 5]; } } else { PathIterator pi = s.getPathIterator(tx); setWindingRule(pi.getWindingRule()); this.pointTypes = new byte[INIT_SIZE]; this.floatCoords = new float[INIT_SIZE * 2]; append(pi, false); } } /** * Construct a Path2D from pre-composed data. * Used by internal font code which has obtained the path data * for a glyph outline, and which promises not to * mess with the arrays, dropping all other references, so there's no need to clone them here. */ public Path2D(int windingRule, byte[] pointTypes, int numTypes, float[] pointCoords, int numCoords) { this.windingRule = windingRule; this.pointTypes = pointTypes; this.numTypes = numTypes; this.floatCoords = pointCoords; this.numCoords = numCoords; } Point2D getPoint(int coordindex) { return new Point2D(floatCoords[coordindex], floatCoords[coordindex+1]); } private boolean close(int ix, float fx, float tolerance) { return (Math.abs(ix - fx) <= tolerance); } /** * Check and return if the fillable interior of the path is a simple * rectangle on nearly integer bounds and initialize the indicated * {@link Rectangle} with the integer representation of the rectangle * if it is. * The method will return false if the path is not rectangular, or if * the horizontal and linear segments are not within the indicated * tolerance of an integer coordinate, or if the resulting rectangle * cannot be safely represented by the integer attributes of the * {@code Rectangle} object. * * @param retrect the {@code Rectangle} to return the rectangular area, * or null * @param tolerance the maximum difference from an integer allowed * for any edge of the rectangle * @return true iff the path is a simple rectangle */ public boolean checkAndGetIntRect(Rectangle retrect, float tolerance) { // Valid rectangular paths are: // 4 segs: MOVE, LINE, LINE, LINE (implicit CLOSE) // 5 segs: MOVE, LINE, LINE, LINE, LINE // 5 segs: MOVE, LINE, LINE, LINE, CLOSE // 6 segs: MOVE, LINE, LINE, LINE, LINE, CLOSE if (numTypes == 5) { // points[4] can be LINETO or CLOSE if (pointTypes[4] != SEG_LINETO && pointTypes[4] != SEG_CLOSE) { return false; } } else if (numTypes == 6) { // points[4] must be LINETO and // points[5] must be CLOSE if (pointTypes[4] != SEG_LINETO) return false; if (pointTypes[5] != SEG_CLOSE) return false; } else if (numTypes != 4) { return false; } if (pointTypes[0] != SEG_MOVETO) return false; if (pointTypes[1] != SEG_LINETO) return false; if (pointTypes[2] != SEG_LINETO) return false; if (pointTypes[3] != SEG_LINETO) return false; int x0 = (int) (floatCoords[0] + 0.5f); int y0 = (int) (floatCoords[1] + 0.5f); if (!close(x0, floatCoords[0], tolerance)) return false; if (!close(y0, floatCoords[1], tolerance)) return false; int x1 = (int) (floatCoords[2] + 0.5f); int y1 = (int) (floatCoords[3] + 0.5f); if (!close(x1, floatCoords[2], tolerance)) return false; if (!close(y1, floatCoords[3], tolerance)) return false; int x2 = (int) (floatCoords[4] + 0.5f); int y2 = (int) (floatCoords[5] + 0.5f); if (!close(x2, floatCoords[4], tolerance)) return false; if (!close(y2, floatCoords[5], tolerance)) return false; int x3 = (int) (floatCoords[6] + 0.5f); int y3 = (int) (floatCoords[7] + 0.5f); if (!close(x3, floatCoords[6], tolerance)) return false; if (!close(y3, floatCoords[7], tolerance)) return false; if (numTypes > 4 && pointTypes[4] == SEG_LINETO) { if (!close(x0, floatCoords[8], tolerance)) return false; if (!close(y0, floatCoords[9], tolerance)) return false; } if ((x0 == x1 && x2 == x3 && y0 == y3 && y1 == y2) || (y0 == y1 && y2 == y3 && x0 == x3 && x1 == x2)) { // We can use either diagonal to calculate the rectangle: // (x0, y0) -> (x2, y2) // (x1, y1) -> (x3, y3) // We also need to deal with upside down and/or backwards rectangles int x, y, w, h; if (x2 < x0) { x = x2; w = x0 - x2; } else { x = x0; w = x2 - x0; } if (y2 < y0) { y = y2; h = y0 - y2; } else { y = y0; h = y2 - y0; } // Overflow protection... if (w < 0) return false; if (h < 0) return false; if (retrect != null) { retrect.setBounds(x, y, w, h); } return true; } return false; } void needRoom(boolean needMove, int newCoords) { if (needMove && (numTypes == 0)) { throw new IllegalPathStateException("missing initial moveto "+ "in path definition"); } int size = pointTypes.length; if (size == 0) { pointTypes = new byte[2]; } else if (numTypes >= size) { pointTypes = expandPointTypes(pointTypes, 1); } size = floatCoords.length; if (numCoords > (floatCoords.length - newCoords)) { floatCoords = expandCoords(floatCoords, newCoords); } } static byte[] expandPointTypes(byte[] oldPointTypes, int needed) { final int oldSize = oldPointTypes.length; final int newSizeMin = oldSize + needed; if (newSizeMin < oldSize) { // hard overflow failure - we can't even accommodate // new items without overflowing throw new ArrayIndexOutOfBoundsException( "pointTypes exceeds maximum capacity !"); } // growth algorithm computation int grow = oldSize; if (grow > EXPAND_MAX) { grow = Math.max(EXPAND_MAX, oldSize >> 3); // 1/8th min } else if (grow < INIT_SIZE) { grow = INIT_SIZE; // ensure > 6 (cubics) } assert grow > 0; int newSize = oldSize + grow; if (newSize < newSizeMin) { // overflow in growth algorithm computation newSize = Integer.MAX_VALUE; } while (true) { try { // try allocating the larger array return Arrays.copyOf(oldPointTypes, newSize); } catch (OutOfMemoryError oome) { if (newSize == newSizeMin) { throw oome; } } newSize = newSizeMin + (newSize - newSizeMin) / 2; } } static float[] expandCoords(float[] oldCoords, int needed) { final int oldSize = oldCoords.length; final int newSizeMin = oldSize + needed; if (newSizeMin < oldSize) { // hard overflow failure - we can't even accommodate // new items without overflowing throw new ArrayIndexOutOfBoundsException( "coords exceeds maximum capacity !"); } // growth algorithm computation int grow = oldSize; if (grow > EXPAND_MAX_COORDS) { grow = Math.max(EXPAND_MAX_COORDS, oldSize >> 3); // 1/8th min } else if (grow < INIT_SIZE) { grow = INIT_SIZE; // ensure > 6 (cubics) } assert grow > needed; int newSize = oldSize + grow; if (newSize < newSizeMin) { // overflow in growth algorithm computation newSize = Integer.MAX_VALUE; } while (true) { try { // try allocating the larger array return Arrays.copyOf(oldCoords, newSize); } catch (OutOfMemoryError oome) { if (newSize == newSizeMin) { throw oome; } } newSize = newSizeMin + (newSize - newSizeMin) / 2; } } /** * Adds a point to the path by moving to the specified * coordinates specified in float precision. * * @param x the specified X coordinate * @param y the specified Y coordinate */ public final void moveTo(float x, float y) { if (numTypes > 0 && pointTypes[numTypes - 1] == SEG_MOVETO) { floatCoords[numCoords-2] = moveX = prevX = currX = x; floatCoords[numCoords-1] = moveY = prevY = currY = y; } else { needRoom(false, 2); pointTypes[numTypes++] = SEG_MOVETO; floatCoords[numCoords++] = moveX = prevX = currX = x; floatCoords[numCoords++] = moveY = prevY = currY = y; } } /** * Adds a point to the path by moving to the specified coordinates * relative to the current point, specified in float precision. * * @param relx the specified relative X coordinate * @param rely the specified relative Y coordinate * @see Path2D#moveTo */ public final void moveToRel(float relx, float rely) { if (numTypes > 0 && pointTypes[numTypes - 1] == SEG_MOVETO) { floatCoords[numCoords-2] = moveX = prevX = (currX += relx); floatCoords[numCoords-1] = moveY = prevY = (currY += rely); } else { needRoom(true, 2); pointTypes[numTypes++] = SEG_MOVETO; floatCoords[numCoords++] = moveX = prevX = (currX += relx); floatCoords[numCoords++] = moveY = prevY = (currY += rely); } } /** * Adds a point to the path by drawing a straight line from the * current coordinates to the new coordinates. * * @param x the specified X coordinate * @param y the specified Y coordinate */ public final void lineTo(float x, float y) { needRoom(true, 2); pointTypes[numTypes++] = SEG_LINETO; floatCoords[numCoords++] = prevX = currX = x; floatCoords[numCoords++] = prevY = currY = y; } /** * Adds a point to the path by drawing a straight line from the * current coordinates to the new coordinates relative to the * current point. * * @param relx the specified relative X coordinate * @param rely the specified relative Y coordinate * @see Path2D#lineTo */ public final void lineToRel(float relx, float rely) { needRoom(true, 2); pointTypes[numTypes++] = SEG_LINETO; floatCoords[numCoords++] = prevX = (currX += relx); floatCoords[numCoords++] = prevY = (currY += rely); } /** * Adds a curved segment to the path, defined by two new points, by * drawing a Quadratic curve that intersects both the current * coordinates and the specified coordinates {@code (x2,y2)}, * using the specified point {@code (x1,y1)} as a quadratic * parametric control point. * * @param x1 the X coordinate of the quadratic control point * @param y1 the Y coordinate of the quadratic control point * @param x2 the X coordinate of the final end point * @param y2 the Y coordinate of the final end point */ public final void quadTo(float x1, float y1, float x2, float y2) { needRoom(true, 4); pointTypes[numTypes++] = SEG_QUADTO; floatCoords[numCoords++] = prevX = x1; floatCoords[numCoords++] = prevY = y1; floatCoords[numCoords++] = currX = x2; floatCoords[numCoords++] = currY = y2; } /** * Adds a curved segment to the path, defined by two new points * relative to the current point, by * drawing a Quadratic curve that intersects both the current * coordinates and the specified relative coordinates {@code (rx2,ry2)}, * using the specified relative point {@code (rx1,ry1)} as a quadratic * parametric control point. * This is equivalent to: *

     *     quadTo(getCurrentX() + rx1, getCurrentY() + ry1,
     *            getCurrentX() + rx2, getCurrentY() + ry2);
     * 
* * @param relx1 the relative X coordinate of the quadratic control point * @param rely1 the relative Y coordinate of the quadratic control point * @param relx2 the relative X coordinate of the final end point * @param rely2 the relative Y coordinate of the final end point * @see Path2D#quadTo */ public final void quadToRel(float relx1, float rely1, float relx2, float rely2) { needRoom(true, 4); pointTypes[numTypes++] = SEG_QUADTO; floatCoords[numCoords++] = prevX = currX + relx1; floatCoords[numCoords++] = prevY = currY + rely1; floatCoords[numCoords++] = (currX += relx2); floatCoords[numCoords++] = (currY += rely2); } /** * Adds a curved segment to the path, defined by a new point, by * drawing a Quadratic curve that intersects both the current * coordinates and the specified coordinates {@code (x,y)}, * using a quadratic parametric control point that is positioned * symmetrically across the current point from the previous curve * control point. * If the previous path segment is not a curve, then the control * point will be positioned at the current point. This is * equivalent to: *
     *     quadTo(getCurrentX() * 2 - ,
     *            getCurrentY() * 2 - ,
     *            x, y);
     * 
* * @param x2 the X coordinate of the final end point * @param y2 the Y coordinate of the final end point * @see Path2D#quadTo */ public final void quadToSmooth(float x2, float y2) { needRoom(true, 4); pointTypes[numTypes++] = SEG_QUADTO; floatCoords[numCoords++] = prevX = (currX * 2.0f - prevX); floatCoords[numCoords++] = prevY = (currY * 2.0f - prevY); floatCoords[numCoords++] = currX = x2; floatCoords[numCoords++] = currY = y2; } /** * Adds a curved segment to the path, defined by a new point * relative to the current point, by * drawing a Quadratic curve that intersects both the current * coordinates and the specified relative coordinates {@code (x,y)}, * using a quadratic parametric control point that is positioned * symmetrically across the current point from the previous curve * control point. * If the previous path segment is not a curve, then the control * point will be positioned at the current point. This is * equivalent to: *
     *     quadTo(getCurrentX() * 2 - ,
     *            getCurrentY() * 2 - ,
     *            getCurrentX() + x, getCurrentY() + y);
     * 
* * @param relx2 the relative X coordinate of the final end point * @param rely2 the relative Y coordinate of the final end point * @see Path2D#quadTo */ public final void quadToSmoothRel(float relx2, float rely2) { needRoom(true, 4); pointTypes[numTypes++] = SEG_QUADTO; floatCoords[numCoords++] = prevX = (currX * 2.0f - prevX); floatCoords[numCoords++] = prevY = (currY * 2.0f - prevY); floatCoords[numCoords++] = (currX += relx2); floatCoords[numCoords++] = (currY += rely2); } /** * Adds a curved segment to the path, defined by three new points, by * drawing a Bézier curve that intersects both the current * coordinates and the specified coordinates {@code (x3,y3)}, * using the specified points {@code (x1,y1)} and {@code (x2,y2)} as * Bézier control points. * * @param x1 the X coordinate of the first Bézier control point * @param y1 the Y coordinate of the first Bézier control point * @param x2 the X coordinate of the second Bézier control point * @param y2 the Y coordinate of the second Bézier control point * @param x3 the X coordinate of the final end point * @param y3 the Y coordinate of the final end point * @see Path2D#curveTo */ public final void curveTo(float x1, float y1, float x2, float y2, float x3, float y3) { needRoom(true, 6); pointTypes[numTypes++] = SEG_CUBICTO; floatCoords[numCoords++] = x1; floatCoords[numCoords++] = y1; floatCoords[numCoords++] = prevX = x2; floatCoords[numCoords++] = prevY = y2; floatCoords[numCoords++] = currX = x3; floatCoords[numCoords++] = currY = y3; } /** * Adds a curved segment to the path, defined by three new points * relative to the current point, by * drawing a Bézier curve that intersects both the current * coordinates and the specified coordinates {@code (x3,y3)}, * using the specified points {@code (x1,y1)} and {@code (x2,y2)} as * Bézier control points. * This is equivalent to: *
     *     curveTo(getCurrentX() + rx1, getCurrentY() + ry1,
     *             getCurrentX() + rx2, getCurrentY() + ry2,
     *             getCurrentX() + rx3, getCurrentY() + ry3)
     * 
* * @param relx1 the relative X coordinate of the first Bézier control point * @param rely1 the relative Y coordinate of the first Bézier control point * @param relx2 the relative X coordinate of the second Bézier control point * @param rely2 the relative Y coordinate of the second Bézier control point * @param relx3 the relative X coordinate of the final end point * @param rely3 the relative Y coordinate of the final end point * @see Path2D#curveTo */ public final void curveToRel(float relx1, float rely1, float relx2, float rely2, float relx3, float rely3) { needRoom(true, 6); pointTypes[numTypes++] = SEG_CUBICTO; floatCoords[numCoords++] = currX + relx1; floatCoords[numCoords++] = currY + rely1; floatCoords[numCoords++] = prevX = currX + relx2; floatCoords[numCoords++] = prevY = currY + rely2; floatCoords[numCoords++] = (currX += relx3); floatCoords[numCoords++] = (currY += rely3); } /** * Adds a curved segment to the path, defined by two new points and * a third point inferred from the previous curve, by * drawing a Bézier curve that intersects both the current * coordinates and the specified coordinates {@code (x3,y3)}, * using the specified point {@code (x2,y2)} as the second * Bézier control point and a first Bézier control * point that is positioned * symmetrically across the current point from the previous curve * control point. * This is equivalent to: *
     *     curveTo(getCurrentX() * 2.0f - ,
     *             getCurrentY() * 2.0f - ,
     *             x2, y2, x3, y3);
     * 
* * @param x2 the X coordinate of the second Bézier control point * @param y2 the Y coordinate of the second Bézier control point * @param x3 the X coordinate of the final end point * @param y3 the Y coordinate of the final end point * @see Path2D#curveTo */ public final void curveToSmooth(float x2, float y2, float x3, float y3) { needRoom(true, 6); pointTypes[numTypes++] = SEG_CUBICTO; floatCoords[numCoords++] = currX * 2.0f - prevX; floatCoords[numCoords++] = currY * 2.0f - prevY; floatCoords[numCoords++] = prevX = x2; floatCoords[numCoords++] = prevY = y2; floatCoords[numCoords++] = currX = x3; floatCoords[numCoords++] = currY = y3; } /** * Adds a curved segment to the path, defined by two new points relative * to the current point and * a third point inferred from the previous curve, by * drawing a Bézier curve that intersects both the current * coordinates and the specified relative coordinates {@code (rx3,ry3)}, * using the specified relative point {@code (rx2,ry2)} as the second * Bézier control point and a first Bézier control * point that is positioned * symmetrically across the current point from the previous curve * control point. * This is equivalent to: *
     *     curveTo(getCurrentX() * 2.0f - ,
     *             getCurrentY() * 2.0f - ,
     *             getCurrentX() + x2, getCurrentY() + y2,
     *             getCurrentX() + x3, getCurrentY() + y3);
     * 
* * @param relx2 the relative X coordinate of the second Bézier control point * @param rely2 the relative Y coordinate of the second Bézier control point * @param relx3 the relative X coordinate of the final end point * @param rely3 the relative Y coordinate of the final end point * @see Path2D#curveTo */ public final void curveToSmoothRel(float relx2, float rely2, float relx3, float rely3) { needRoom(true, 6); pointTypes[numTypes++] = SEG_CUBICTO; floatCoords[numCoords++] = currX * 2.0f - prevX; floatCoords[numCoords++] = currY * 2.0f - prevY; floatCoords[numCoords++] = prevX = currX + relx2; floatCoords[numCoords++] = prevY = currY + rely2; floatCoords[numCoords++] = (currX += relx3); floatCoords[numCoords++] = (currY += rely3); } /** * Append a section of a quadrant of an oval to the current path, * relative to the current point. * See {@link appendOvalQuadrant} for a precise definition of the * path segments to be added, considering that this method uses the * current point of the path as the first pair of coordinates and * a hard-coded prefix of {@link CornerPrefix.CORNER_ONLY CORNER_ONLY}. * This method is equivalent to (and only slightly faster than): *
     *     appendOvalQuadrant(getCurrentX(), getCurrentY(),
     *                        cx, cy, ex, ey, tfrom, tto,
     *                        CornerPrefix.CORNER_ONLY);
     * 
* Note that you could define a circle inscribed in the rectangular * bounding box from {@code (x0, y0)} to {@code (x1, y1)} with the * following 4 calls to this method: *
     *     Path2D path = new Path2D();
     *     float cx = (x0 + x1) * 0.5f; // center X coordinate of top and bottom
     *     float cy = (y0 + y1) * 0.5f; // center Y coordinate of left and right
     *     path.moveTo(cx, y0);
     *     path.ovalQuadrantTo(x1, y0, x1, cy, 0f, 1f);
     *     path.ovalQuadrantTo(x1, y1, cx, y1, 0f, 1f);
     *     path.ovalQuadrantTo(x0, y1, x0, cy, 0f, 1f);
     *     path.ovalQuadrantTo(x0, y0, cx, y0, 0f, 1f);
     *     path.closePath();
     * 
* You could also define a rounded rectangle inscribed in the rectangular * bounding box from {@code (x0, y0)} to {@code (x1, y1)} with a corner * arc radius {@code r} less than half the width and the height with the * following 4 calls to this method: *
     *     Path2D path = new Path2D();
     *     float lx = x0 + r;
     *     float rx = x1 - r;
     *     float ty = y0 + r;
     *     float by = y1 - r;
     *     path.moveTo(rx, y0);
     *     path.ovalQuadrantTo(x1, y0, x1, ty, 0f, 1f);
     *     path.lineTo(x1, by);
     *     path.ovalQuadrantTo(x1, y1, rx, y1, 0f, 1f);
     *     path.lineTo(lx, y1);
     *     path.ovalQuadrantTo(x0, y1, x0, by, 0f, 1f);
     *     path.lineTo(x0, by);
     *     path.ovalQuadrantTo(x0, y0, lx, y0, 0f, 1f);
     *     path.closePath();
     * 
* * @param cx the X coordinate of the corner * @param cy the Y coordinate of the corner * @param ex the X coordinate of the midpoint of the trailing edge * interpolated by the oval * @param ey the Y coordinate of the midpoint of the trailing edge * interpolated by the oval * @param tfrom the fraction of the oval section where the curve should start * @param tto the fraction of the oval section where the curve should end * @throws IllegalPathStateException * if there is no current point in the path * @throws IllegalArgumentException * if the {@code tfrom} and {@code tto} values do not satisfy the * required relationship {@code (0 <= tfrom <= tto <= 1). */ public final void ovalQuadrantTo(float cx, float cy, float ex, float ey, float tfrom, float tto) { if (numTypes < 1) { throw new IllegalPathStateException("missing initial moveto "+ "in path definition"); } appendOvalQuadrant(currX, currY, cx, cy, ex, ey, tfrom, tto, CornerPrefix.CORNER_ONLY); } /** * Append a section of a quadrant of an oval to the current path. * The oval from which a quadrant is taken is the oval that would be * inscribed in a parallelogram defined by 3 points, * {@code (sx, sy)} which is considered to be the midpoint of the edge * leading into the corner of the oval where the oval grazes it, * {@code (cx, cy)} which is considered to be the location of the * corner of the parallelogram in which the oval is inscribed, * and {@code (ex, ey)} which is considered to be the midpoint of the * edge leading away from the corner of the oval where the oval grazes it. * A typical case involves the two segments being equal in length and * at right angles to each other in which case the oval is a quarter of * a circle. *

* Only the portion of the oval from {@code tfrom} to {@code tto} * will be included where {@code 0f} represents the point where the * oval grazes the leading edge, {@code 1f} represents the point where * the oval grazes the trailing edge, and {@code 0.5f} represents the * point on the oval closest to the corner (i.e. the "45 degree" point). * The two values must satisfy the relation * {@code (0 <= tfrom <= tto <= 1)}. * If {@code tfrom} is not {@code 0f} then the caller would most likely * want to use one of the {@code prefix} values that inserts a segment * leading to the initial point (see below). *

* An initial {@link moveTo} or {@link lineTo} can be added to direct * the path to the starting point of the oval section if * {@link CornerPrefix.MOVE_THEN_CORNER MOVE_THEN_CORNER} or * {@link CornerPrefix.LINE_THEN_CORNER LINE_THEN_CORNER} are * specified by the prefix argument. * The {@code lineTo} path segment will only be added if the current point * is not already at the indicated location to avoid spurious empty line * segments. * The prefix can be specified as * {@link CornerPrefix.CORNER_ONLY CORNER_ONLY} if the current point * on the path is known to be at the starting point of the oval section, * but could otherwise produce odd results if the current point is not * appropriate. *

* Note that you could define a circle inscribed in the rectangular * bounding box from {@code (x0, y0)} to {@code (x1, y1)} with the * following 4 calls to this method: *

     *     Path2D path = new Path2D();
     *     float cx = (x0 + x1) * 0.5f; // center X coordinate of top and bottom
     *     float cy = (y0 + y1) * 0.5f; // center Y coordinate of left and right
     *     path.appendOvalQuadrant(cx, y0, x1, y0, x1, cy, 0f, 1f, MOVE_THEN_CORNER);
     *     path.appendOvalQuadrant(x1, cy, x1, y1, cx, y1, 0f, 1f, CORNER_ONLY);
     *     path.appendOvalQuadrant(cx, y1, x0, y1, x0, cy, 0f, 1f, CORNER_ONLY);
     *     path.appendOvalQuadrant(x0, cy, x0, y0, cx, y0, 0f, 1f, CORNER_ONLY);
     *     path.closePath();
     * 
* You could also define a rounded rectangle inscribed in the rectangular * bounding box from {@code (x0, y0)} to {@code (x1, y1)} with a corner * arc radius {@code r} less than half the width and the height with the * following 4 calls to this method: *
     *     Path2D path = new Path2D();
     *     float lx = x0 + r;
     *     float rx = x1 - r;
     *     float ty = y0 + r;
     *     float by = y1 - r;
     *     path.appendOvalQuadrant(rx, y0, x1, y0, x1, ty, 0f, 1f, MOVE_THEN_CORNER);
     *     path.appendOvalQuadrant(x1, by, x1, y1, rx, y1, 0f, 1f, LINE_THEN_CORNER);
     *     path.appendOvalQuadrant(lx, y1, x0, y1, x0, by, 0f, 1f, LINE_THEN_CORNER);
     *     path.appendOvalQuadrant(x0, by, x0, y0, lx, y0, 0f, 1f, LINE_THEN_CORNER);
     *     path.closePath();
     * 
* * @param sx the X coordinate of the midpoint of the leading edge * interpolated by the oval * @param sy the Y coordinate of the midpoint of the leading edge * interpolated by the oval * @param cx the X coordinate of the corner * @param cy the Y coordinate of the corner * @param ex the X coordinate of the midpoint of the trailing edge * interpolated by the oval * @param ey the Y coordinate of the midpoint of the trailing edge * interpolated by the oval * @param tfrom the fraction of the oval section where the curve should start * @param tto the fraction of the oval section where the curve should end * @param prefix the specification of what additional path segments should * be appended to lead the current path to the starting point * @throws IllegalPathStateException * if there is no current point in the path and the prefix is * not {@code CornerPrevix.MOVE_THEN_CORNER MOVE_THEN_CORNER}. * @throws IllegalArgumentException * if the {@code tfrom} and {@code tto} values do not satisfy the * required relationship {@code (0 <= tfrom <= tto <= 1). */ public final void appendOvalQuadrant(float sx, float sy, float cx, float cy, float ex, float ey, float tfrom, float tto, CornerPrefix prefix) { if (!(tfrom >= 0f && tfrom <= tto && tto <= 1f)) { throw new IllegalArgumentException("0 <= tfrom <= tto <= 1 required"); } float cx0 = (float) (sx + (cx - sx) * EllipseIterator.CtrlVal); float cy0 = (float) (sy + (cy - sy) * EllipseIterator.CtrlVal); float cx1 = (float) (ex + (cx - ex) * EllipseIterator.CtrlVal); float cy1 = (float) (ey + (cy - ey) * EllipseIterator.CtrlVal); if (tto < 1f) { float t = 1f - tto; ex += (cx1 - ex) * t; ey += (cy1 - ey) * t; cx1 += (cx0 - cx1) * t; cy1 += (cy0 - cy1) * t; cx0 += (sx - cx0) * t; cy0 += (sy - cy0) * t; ex += (cx1 - ex) * t; ey += (cy1 - ey) * t; cx1 += (cx0 - cx1) * t; cy1 += (cy0 - cy1) * t; ex += (cx1 - ex) * t; ey += (cy1 - ey) * t; } if (tfrom > 0f) { if (tto < 1f) { tfrom = tfrom / tto; } sx += (cx0 - sx) * tfrom; sy += (cy0 - sy) * tfrom; cx0 += (cx1 - cx0) * tfrom; cy0 += (cy1 - cy0) * tfrom; cx1 += (ex - cx1) * tfrom; cy1 += (ey - cy1) * tfrom; sx += (cx0 - sx) * tfrom; sy += (cy0 - sy) * tfrom; cx0 += (cx1 - cx0) * tfrom; cy0 += (cy1 - cy0) * tfrom; sx += (cx0 - sx) * tfrom; sy += (cy0 - sy) * tfrom; } if (prefix == CornerPrefix.MOVE_THEN_CORNER) { // Always execute moveTo so we break the path... moveTo(sx, sy); } else if (prefix == CornerPrefix.LINE_THEN_CORNER) { if (numTypes == 1 || sx != currX || sy != currY) { lineTo(sx, sy); } } if (tfrom == tto || (sx == cx0 && cx0 == cx1 && cx1 == ex && sy == cy0 && cy0 == cy1 && cy1 == ey)) { if (prefix != CornerPrefix.LINE_THEN_CORNER) { lineTo(ex, ey); } } else { curveTo(cx0, cy0, cx1, cy1, ex, ey); } } /** * Append a portion of an ellipse to the path. * The ellipse from which the portions are extracted follows the rules: *
    *
  • The ellipse will have its X axis tilted from horizontal by the * angle {@code xAxisRotation} specified in radians. *
  • The ellipse will have the X and Y radii (viewed from its tilted * coordinate system) specified by {@code radiusx} and {@code radiusy} * unless that ellipse is too small to bridge the gap from the current * point to the specified destination point in which case a larger * ellipse with the same ratio of dimensions will be substituted instead. *
  • The ellipse may slide perpendicular to the direction from the * current point to the specified destination point so that it just * touches the two points. * The direction it slides (to the "left" or to the "right") will be * chosen to meet the criteria specified by the two boolean flags as * described below. * Only one direction will allow the method to meet both criteria. *
  • If the {@code largeArcFlag} is true, then the ellipse will sweep * the longer way around the ellipse that meets these criteria. *
  • If the {@code sweepFlag} is true, then the ellipse will sweep * clockwise around the ellipse that meets these criteria. *
* The method will do nothing if the destination point is the same as * the current point. * The method will draw a simple line segment to the destination point * if either of the two radii are zero. *

* Note: This method adheres to the definition of an elliptical arc path * segment from the SVG spec: *

     * http://www.w3.org/TR/SVG/paths.html#PathDataEllipticalArcCommands
     * 
* * @param radiusx the X radius of the tilted ellipse * @param radiusy the Y radius of the tilted ellipse * @param xAxisRotation the angle of tilt of the ellipse * @param largeArcFlag true iff the path will sweep the long way around * the ellipse * @param sweepFlag true iff the path will sweep clockwise around * the ellipse * @param x the destination X coordinate * @param y the destination Y coordinate * @throws IllegalPathStateException * if there is no current point in the path */ public void arcTo(float radiusx, float radiusy, float xAxisRotation, boolean largeArcFlag, boolean sweepFlag, float x, float y) { // First ensure preceding moveto if (numTypes < 1) { throw new IllegalPathStateException("missing initial moveto "+ "in path definition"); } // Reference equations are provided for implementation assistance: // http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes // We use the following modifications: // They use a secondary coordinate system which is based on // - translating to the midpoint between the endpoints // - rotating so that the xAxis is "horizontal" // You can see that most of their math then has their secondary // coordinates being divided by rx and ry everywhere so we scale // by 1/rx and 1/ry so that we are working on a unit circle: // [ x' ] [ +cos/rx +sin/rx ] [ x - mx ] // [ ] = [ ] * [ ] // [ y' ] [ -sin/ry +cos/ry ] [ y - my ] // and reversing back to user space coordinates: // [ x ] [ +cos -sin ] [ x' * rx ] [ mx ] // [ ] = [ ] * [ ] + [ ] // [ y ] [ +sin +cos ] [ y' * ry ] [ my ] double rx = Math.abs(radiusx); double ry = Math.abs(radiusy); if (rx == 0 || ry == 0) { lineTo(x, y); return; } double x1 = currX; double y1 = currY; double x2 = x; double y2 = y; if (x1 == x2 && y1 == y2) { return; } double cosphi, sinphi; if (xAxisRotation == 0.0) { cosphi = 1.0; sinphi = 0.0; } else { cosphi = Math.cos(xAxisRotation); sinphi = Math.sin(xAxisRotation); } double mx = (x1 + x2) / 2.0; double my = (y1 + y2) / 2.0; double relx1 = x1 - mx; double rely1 = y1 - my; double x1p = (cosphi * relx1 + sinphi * rely1) / rx; double y1p = (cosphi * rely1 - sinphi * relx1) / ry; // The documentation for the SVG arc operator recommends computing // a "scale" value and then scaling the radii appropriately if the // scale is greater than 1. Technically, they are computing the // ratio of the distance to the endpoints compared to the distance // across the indicated section of the ellipse centered at the midpoint. // If the ratio is greater than 1 then the endpoints are outside the // ellipse and so the ellipse is not large enough to bridge the gap // without growing. If they are inside, then we slide the ellipse // in the appropriate direction as specified by the 2 flags so that // the transformed relative points are on the edge. If they // are outside, then we note that we simply have a (distorted) half // circle to render in that case since the endpoints will be on // opposite sides of a stretched version of the unmoved ellipse. double lenpsq = x1p * x1p + y1p * y1p; if (lenpsq >= 1.0) { // Unlike the reference equations, we do not need to scale the // radii here since we will work directly from the transformed // relative vectors which already have the proper distance from // the midpoint. (They are already on the "stretched" ellipse.) // Produce 2 quadrant circles from: // x1p,y1p => xqp,yqp => x2p,y2p // where x2p,y2p = -x1p,-y1p // and xqp,yqp = either y1p,-x1p or -y1p,x1p depending on sweepFlag // the corners of the quadrants are at: // x1p+xqp,y1p+yqp and x2p+xqp,y2p+yqp // or consequently at: // x1+(xq-mx),y1+(yq-my) and x2+(xq-mx),y2+(yq-my) double xqpr = y1p * rx; double yqpr = x1p * ry; if (sweepFlag) { xqpr = -xqpr; } else { yqpr = -yqpr; } double relxq = cosphi * xqpr - sinphi * yqpr; double relyq = cosphi * yqpr + sinphi * xqpr; double xq = mx + relxq; double yq = my + relyq; double xc = x1 + relxq; double yc = y1 + relyq; appendOvalQuadrant((float) x1, (float) y1, (float) xc, (float) yc, (float) xq, (float) yq, 0f, 1f, CornerPrefix.CORNER_ONLY); xc = x2 + relxq; yc = y2 + relyq; appendOvalQuadrant((float) xq, (float) yq, (float) xc, (float) yc, (float) x2, (float) y2, 0f, 1f, CornerPrefix.CORNER_ONLY); return; } // We now need to displace the circle perpendicularly to the line // between the end points so that the new center is at a unit distance // to either end point. One component of the new distance will be // the distance from the midpoint to either end point (the square // of which is already computed in "den" above). The other component // of the new distances will be how far we displace the center: // lenpsq + displen^2 = 1.0 // displen^2 = 1.0 - lenpsq // displen = sqrt(1 - lenpsq) // The vector we displace along is the perpendicular of the x1p,y1p // vector whose length is sqrt(lenpsq) so we need to divide that vector // by that length to turn it into a unit vector: // cxp = +/-y1p / sqrt(lenpsq) * displen // cyp = +/-x1p / sqrt(lenpsq) * displen // To simplify, we combine the "/sqrt(lenpsq)" factor into displen to // share the one sqrt() calculation: // scalef = displen / sqrt(lenpsq) = sqrt((1-lenpsq)/lenpsq) double scalef = Math.sqrt((1.0 - lenpsq) / lenpsq); // cxp,cyp is displaced perpendicularly to the relative vector x1p,y1p // by the scalef value. The perpendicular is either -y1p,x1p or // y1p,-x1p depending on the values of the flags. double cxp = scalef * y1p; double cyp = scalef * x1p; // The direction of the perpendicular (which component is negated) // depends on both flags. if (largeArcFlag == sweepFlag) { cxp = -cxp; } else { cyp = -cyp; } mx += (cosphi * cxp * rx - sinphi * cyp * ry); my += (cosphi * cyp * ry + sinphi * cxp * rx); // Now we sweep by quadrants in the direction specified until we // reach the angle to the destination point and possibly perform // one last partial-quadrant arc segment. // First we need to reexpress our vectors relative to the new center. double ux = x1p - cxp; double uy = y1p - cyp; // x2p = -x1p; x2p-cxp = -x1p-cxp = -(x1p+cxp) // y2p = -y1p; y2p-cyp = -y1p-cyp = -(y1p+cyp) double vx = -(x1p + cxp); double vy = -(y1p + cyp); // px and py are the factors that produce the perpendicular for ux,uy // in the direction specified by sweepFlag. boolean done = false; // set to true when we detect "last quadrant" float quadlen = 1.0f; // 1.0 yields a full 90 degree arc at a time boolean wasclose = false; // overshoot prevention do { // Compute the next circle quadrant endpoint, cw or ccw double xqp = uy; double yqp = ux; if (sweepFlag) { xqp = -xqp; } else { yqp = -yqp; } // qp.v > 0 tells us if sweep towards v is < 180 if (xqp * vx + yqp * vy > 0) { // u.v >= 0 now tells us if sweep towards v is <= 90 // (It is also true for >270, but we already checked for <180) double dot = ux * vx + uy * vy; if (dot >= 0) { // u.v is the cosine of the angle we have left since both // u and v are unit vectors. We now need to express how // much we want to shorten this last arc segment in terms // of 0.0=>1.0 meaning 0=>90 degrees. quadlen = (float) (Math.acos(dot) / (Math.PI / 2.0)); done = true; } // Remember that we were once within 180 degrees so we // do not accidentally overshoot due to fp rounding error. wasclose = true; } else if (wasclose) { // At some point we were in the <180 case above, but now we // are back at the >180 case having never gone into the <90 // case where done would have been set to true. This should // not happen, but since we are computing the perpendiculars // and then expecting that they will have predictable results // in the dot product equations, there is a theoretical chance // of a tiny round-off error that would cause us to overshoot // from just barely >90 left to suddenly past the 0 point. // If that ever happens, we will end up in here and we can just // break out of the loop since that last quadrant we rendered // should have landed us right on top of the vx,vy location. break; } double relxq = (cosphi * xqp * rx - sinphi * yqp * ry); double relyq = (cosphi * yqp * ry + sinphi * xqp * rx); double xq = mx + relxq; double yq = my + relyq; double xc = x1 + relxq; double yc = y1 + relyq; appendOvalQuadrant((float) x1, (float) y1, (float) xc, (float) yc, (float) xq, (float) yq, 0f, quadlen, CornerPrefix.CORNER_ONLY); x1 = xq; y1 = yq; ux = xqp; uy = yqp; } while (!done); } /** * Append a portion of an ellipse to the path using relative coordinates. * This method is identical to calling: *
     *     arcTo(radiusX, radiusY, xAxisRotation,
     *           largeArcFlag, sweepFlag,
     *           getCurrentX() + rx, getCurrentY() + ry);
     * 
* * @param radiusx the X radius of the tilted ellipse * @param radiusy the Y radius of the tilted ellipse * @param xAxisRotation the angle of tilt of the ellipse * @param largeArcFlag true iff the path will sweep the long way around * the ellipse * @param sweepFlag true iff the path will sweep clockwise around * the ellipse * @param relx the relative destination relative X coordinate * @param rely the relative destination relative Y coordinate * @throws IllegalPathStateException * if there is no current point in the path * @see Path2D#arcTo */ public void arcToRel(float radiusx, float radiusy, float xAxisRotation, boolean largeArcFlag, boolean sweepFlag, float relx, float rely) { arcTo(radiusx, radiusy, xAxisRotation, largeArcFlag, sweepFlag, currX + relx, currY + rely); } int pointCrossings(float px, float py) { float movx, movy, curx, cury, endx, endy; float coords[] = floatCoords; curx = movx = coords[0]; cury = movy = coords[1]; int crossings = 0; int ci = 2; for (int i = 1; i < numTypes; i++) { switch (pointTypes[i]) { case PathIterator.SEG_MOVETO: if (cury != movy) { crossings += Shape.pointCrossingsForLine(px, py, curx, cury, movx, movy); } movx = curx = coords[ci++]; movy = cury = coords[ci++]; break; case PathIterator.SEG_LINETO: crossings += Shape.pointCrossingsForLine(px, py, curx, cury, endx = coords[ci++], endy = coords[ci++]); curx = endx; cury = endy; break; case PathIterator.SEG_QUADTO: crossings += Shape.pointCrossingsForQuad(px, py, curx, cury, coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CUBICTO: crossings += Shape.pointCrossingsForCubic(px, py, curx, cury, coords[ci++], coords[ci++], coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CLOSE: if (cury != movy) { crossings += Shape.pointCrossingsForLine(px, py, curx, cury, movx, movy); } curx = movx; cury = movy; break; } } if (cury != movy) { crossings += Shape.pointCrossingsForLine(px, py, curx, cury, movx, movy); } return crossings; } int rectCrossings(float rxmin, float rymin, float rxmax, float rymax) { float coords[] = floatCoords; float curx, cury, movx, movy, endx, endy; curx = movx = coords[0]; cury = movy = coords[1]; int crossings = 0; int ci = 2; for (int i = 1; crossings != Shape.RECT_INTERSECTS && i < numTypes; i++) { switch (pointTypes[i]) { case PathIterator.SEG_MOVETO: if (curx != movx || cury != movy) { crossings = Shape.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, movx, movy); } // Count should always be a multiple of 2 here. // assert((crossings & 1) != 0); movx = curx = coords[ci++]; movy = cury = coords[ci++]; break; case PathIterator.SEG_LINETO: crossings = Shape.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, endx = coords[ci++], endy = coords[ci++]); curx = endx; cury = endy; break; case PathIterator.SEG_QUADTO: crossings = Shape.rectCrossingsForQuad(crossings, rxmin, rymin, rxmax, rymax, curx, cury, coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CUBICTO: crossings = Shape.rectCrossingsForCubic(crossings, rxmin, rymin, rxmax, rymax, curx, cury, coords[ci++], coords[ci++], coords[ci++], coords[ci++], endx = coords[ci++], endy = coords[ci++], 0); curx = endx; cury = endy; break; case PathIterator.SEG_CLOSE: if (curx != movx || cury != movy) { crossings = Shape.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, movx, movy); } curx = movx; cury = movy; // Count should always be a multiple of 2 here. // assert((crossings & 1) != 0); break; } } if (crossings != Shape.RECT_INTERSECTS && (curx != movx || cury != movy)) { crossings = Shape.rectCrossingsForLine(crossings, rxmin, rymin, rxmax, rymax, curx, cury, movx, movy); } // Count should always be a multiple of 2 here. // assert((crossings & 1) != 0); return crossings; } /** * {@inheritDoc} */ public final void append(PathIterator pi, boolean connect) { float coords[] = new float[6]; while (!pi.isDone()) { switch (pi.currentSegment(coords)) { case SEG_MOVETO: if (!connect || numTypes < 1 || numCoords < 1) { moveTo(coords[0], coords[1]); break; } if (pointTypes[numTypes - 1] != SEG_CLOSE && floatCoords[numCoords-2] == coords[0] && floatCoords[numCoords-1] == coords[1]) { // Collapse out initial moveto/lineto break; } // NO BREAK; case SEG_LINETO: lineTo(coords[0], coords[1]); break; case SEG_QUADTO: quadTo(coords[0], coords[1], coords[2], coords[3]); break; case SEG_CUBICTO: curveTo(coords[0], coords[1], coords[2], coords[3], coords[4], coords[5]); break; case SEG_CLOSE: closePath(); break; } pi.next(); connect = false; } } /** * {@inheritDoc} */ public final void transform(BaseTransform tx) { if (numCoords == 0) return; needRoom(false, 6); floatCoords[numCoords + 0] = moveX; floatCoords[numCoords + 1] = moveY; floatCoords[numCoords + 2] = prevX; floatCoords[numCoords + 3] = prevY; floatCoords[numCoords + 4] = currX; floatCoords[numCoords + 5] = currY; tx.transform(floatCoords, 0, floatCoords, 0, numCoords / 2 + 3); moveX = floatCoords[numCoords + 0]; moveY = floatCoords[numCoords + 1]; prevX = floatCoords[numCoords + 2]; prevY = floatCoords[numCoords + 3]; currX = floatCoords[numCoords + 4]; currY = floatCoords[numCoords + 5]; } /** * {@inheritDoc} */ public final RectBounds getBounds() { float x1, y1, x2, y2; int i = numCoords; if (i > 0) { y1 = y2 = floatCoords[--i]; x1 = x2 = floatCoords[--i]; while (i > 0) { float y = floatCoords[--i]; float x = floatCoords[--i]; if (x < x1) x1 = x; if (y < y1) y1 = y; if (x > x2) x2 = x; if (y > y2) y2 = y; } } else { x1 = y1 = x2 = y2 = 0.0f; } return new RectBounds(x1, y1, x2, y2); } // The following three methods are used only by Prism to access // internal structures; not intended for general use! public final int getNumCommands() { return numTypes; } public final byte[] getCommandsNoClone() { return pointTypes; } public final float[] getFloatCoordsNoClone() { return floatCoords; } /** * {@inheritDoc} *

* The iterator for this class is not multi-threaded safe, * which means that the {@code Path2D} class does not * guarantee that modifications to the geometry of this * {@code Path2D} object do not affect any iterations of * that geometry that are already in process. */ public PathIterator getPathIterator(BaseTransform tx) { if (tx == null) { return new CopyIterator(this); } else { return new TxIterator(this, tx); } } static class CopyIterator extends Path2D.Iterator { float floatCoords[]; CopyIterator(Path2D p2df) { super(p2df); this.floatCoords = p2df.floatCoords; } public int currentSegment(float[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { System.arraycopy(floatCoords, pointIdx, coords, 0, numCoords); } return type; } public int currentSegment(double[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { for (int i = 0; i < numCoords; i++) { coords[i] = floatCoords[pointIdx + i]; } } return type; } } static class TxIterator extends Path2D.Iterator { float floatCoords[]; BaseTransform transform; TxIterator(Path2D p2df, BaseTransform tx) { super(p2df); this.floatCoords = p2df.floatCoords; this.transform = tx; } public int currentSegment(float[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { transform.transform(floatCoords, pointIdx, coords, 0, numCoords / 2); } return type; } public int currentSegment(double[] coords) { int type = path.pointTypes[typeIdx]; int numCoords = curvecoords[type]; if (numCoords > 0) { transform.transform(floatCoords, pointIdx, coords, 0, numCoords / 2); } return type; } } /** * Closes the current subpath by drawing a straight line back to * the coordinates of the last {@code moveTo}. If the path is already * closed then this method has no effect. */ public final void closePath() { if (numTypes == 0 || pointTypes[numTypes - 1] != SEG_CLOSE) { needRoom(true, 0); pointTypes[numTypes++] = SEG_CLOSE; prevX = currX = moveX; prevY = currY = moveY; } } public void pathDone() { } /** * Appends the geometry of the specified {@code Shape} object to the * path, possibly connecting the new geometry to the existing path * segments with a line segment. * If the {@code connect} parameter is {@code true} and the * path is not empty then any initial {@code moveTo} in the * geometry of the appended {@code Shape} * is turned into a {@code lineTo} segment. * If the destination coordinates of such a connecting {@code lineTo} * segment match the ending coordinates of a currently open * subpath then the segment is omitted as superfluous. * The winding rule of the specified {@code Shape} is ignored * and the appended geometry is governed by the winding * rule specified for this path. * * @param s the {@code Shape} whose geometry is appended * to this path * @param connect a boolean to control whether or not to turn an initial * {@code moveTo} segment into a {@code lineTo} segment * to connect the new geometry to the existing path */ public final void append(Shape s, boolean connect) { append(s.getPathIterator(null), connect); } static class SVGParser { final String svgpath; final int len; int pos; boolean allowcomma; public SVGParser(String svgpath) { this.svgpath = svgpath; this.len = svgpath.length(); } public boolean isDone() { return (toNextNonWsp() >= len); } public char getChar() { return svgpath.charAt(pos++); } public boolean nextIsNumber() { if (toNextNonWsp() < len) { switch (svgpath.charAt(pos)) { case '-': case '+': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '.': return true; } } return false; } public float f() { return getFloat(); } public float a() { return (float) Math.toRadians(getFloat()); } public float getFloat() { int start = toNextNonWsp(); this.allowcomma = true; int end = toNumberEnd(); if (start < end) { String flstr = svgpath.substring(start, end); try { return Float.parseFloat(flstr); } catch (NumberFormatException e) { } throw new IllegalArgumentException("invalid float ("+flstr+ ") in path at pos="+start); } throw new IllegalArgumentException("end of path looking for float"); } public boolean b() { toNextNonWsp(); this.allowcomma = true; if (pos < len) { char flag = svgpath.charAt(pos); switch (flag) { case '0': pos++; return false; case '1': pos++; return true; } throw new IllegalArgumentException("invalid boolean flag ("+flag+ ") in path at pos="+pos); } throw new IllegalArgumentException("end of path looking for boolean"); } private int toNextNonWsp() { boolean canbecomma = this.allowcomma; while (pos < len) { switch (svgpath.charAt(pos)) { case ',': if (!canbecomma) { return pos; } canbecomma = false; break; case ' ': case '\t': case '\r': case '\n': break; default: return pos; } pos++; } return pos; } private int toNumberEnd() { boolean allowsign = true; boolean hasexp = false; boolean hasdecimal = false; while (pos < len) { switch (svgpath.charAt(pos)) { case '-': case '+': if (!allowsign) return pos; allowsign = false; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': allowsign = false; break; case 'E': case 'e': if (hasexp) return pos; hasexp = allowsign = true; break; case '.': if (hasexp || hasdecimal) return pos; hasdecimal = true; allowsign = false; break; default: return pos; } pos++; } return pos; } } /** * Appends the geometry of the path in the specified {@code String} * argument in the format of an SVG path. * The specification of the grammar of the language for an SVG path * is specified on the W3C web page: *

     * http://www.w3.org/TR/SVG/paths.html#PathDataBNF
     * 
* and the interpretation of the various elements in the format is * specified on the W3C web page: *
     * http://www.w3.org/TR/SVG/paths.html#PathData
     * 
* * @param svgpath the {@code String} object containing the SVG style * definition of the geometry to be apppended * @throws IllegalArgumentException * if {@code svgpath} does not match the indicated SVG path grammar * @throws IllegalPathStateException * if there is no current point in the path */ public final void appendSVGPath(String svgpath) { SVGParser p = new SVGParser(svgpath); p.allowcomma = false; while (!p.isDone()) { p.allowcomma = false; char cmd = p.getChar(); switch (cmd) { case 'M': moveTo(p.f(), p.f()); while (p.nextIsNumber()) { lineTo(p.f(), p.f()); } break; case 'm': if (numTypes > 0) { moveToRel(p.f(), p.f()); } else { moveTo(p.f(), p.f()); } while (p.nextIsNumber()) { lineToRel(p.f(), p.f()); } break; case 'L': do { lineTo(p.f(), p.f()); } while (p.nextIsNumber()); break; case 'l': do { lineToRel(p.f(), p.f()); } while (p.nextIsNumber()); break; case 'H': do { lineTo(p.f(), currY); } while (p.nextIsNumber()); break; case 'h': do { lineToRel(p.f(), 0); } while (p.nextIsNumber()); break; case 'V': do { lineTo(currX, p.f()); } while (p.nextIsNumber()); break; case 'v': do { lineToRel(0, p.f()); } while (p.nextIsNumber()); break; case 'Q': do { quadTo(p.f(), p.f(), p.f(), p.f()); } while (p.nextIsNumber()); break; case 'q': do { quadToRel(p.f(), p.f(), p.f(), p.f()); } while (p.nextIsNumber()); break; case 'T': do { quadToSmooth(p.f(), p.f()); } while (p.nextIsNumber()); break; case 't': do { quadToSmoothRel(p.f(), p.f()); } while (p.nextIsNumber()); break; case 'C': do { curveTo(p.f(), p.f(), p.f(), p.f(), p.f(), p.f()); } while (p.nextIsNumber()); break; case 'c': do { curveToRel(p.f(), p.f(), p.f(), p.f(), p.f(), p.f()); } while (p.nextIsNumber()); break; case 'S': do { curveToSmooth(p.f(), p.f(), p.f(), p.f()); } while (p.nextIsNumber()); break; case 's': do { curveToSmoothRel(p.f(), p.f(), p.f(), p.f()); } while (p.nextIsNumber()); break; case 'A': do { arcTo(p.f(), p.f(), p.a(), p.b(), p.b(), p.f(), p.f()); } while (p.nextIsNumber()); break; case 'a': do { arcToRel(p.f(), p.f(), p.a(), p.b(), p.b(), p.f(), p.f()); } while (p.nextIsNumber()); break; case 'Z': case 'z': closePath(); break; default: throw new IllegalArgumentException("invalid command ("+cmd+ ") in SVG path at pos="+p.pos); } p.allowcomma = false; } } /** * Returns the fill style winding rule. * * @return an integer representing the current winding rule. * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO * @see #setWindingRule */ public final int getWindingRule() { return windingRule; } /** * Sets the winding rule for this path to the specified value. * * @param rule an integer representing the specified * winding rule * @exception IllegalArgumentException if * {@code rule} is not either * {@link #WIND_EVEN_ODD} or * {@link #WIND_NON_ZERO} * @see #getWindingRule */ public final void setWindingRule(int rule) { if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO) { throw new IllegalArgumentException("winding rule must be "+ "WIND_EVEN_ODD or "+ "WIND_NON_ZERO"); } windingRule = rule; } /** * Returns the coordinates most recently added to the end of the path * as a {@link Point2D} object. * * @return a {@code Point2D} object containing the ending coordinates of * the path or {@code null} if there are no points in the path. */ public final Point2D getCurrentPoint() { if (numTypes < 1) { return null; } return new Point2D(currX, currY); } public final float getCurrentX() { if (numTypes < 1) { throw new IllegalPathStateException("no current point in empty path"); } return currX; } public final float getCurrentY() { if (numTypes < 1) { throw new IllegalPathStateException("no current point in empty path"); } return currY; } /** * Resets the path to empty. The append position is set back to the * beginning of the path and all coordinates and point types are * forgotten. */ public final void reset() { numTypes = numCoords = 0; moveX = moveY = prevX = prevY = currX = currY = 0; } /** * Returns a new {@code Shape} representing a transformed version * of this {@code Path2D}. * Note that the exact type and coordinate precision of the return * value is not specified for this method. * The method will return a Shape that contains no less precision * for the transformed geometry than this {@code Path2D} currently * maintains, but it may contain no more precision either. * If the tradeoff of precision vs. storage size in the result is * important then the convenience constructors in the * {@link Path2D(Shape, BaseTransform) Path2D} * * @param tx the {@code BaseTransform} used to transform a * new {@code Shape}. * @return a new {@code Shape}, transformed with the specified * {@code BaseTransform}. */ public final Shape createTransformedShape(BaseTransform tx) { return new Path2D(this, tx); } @Override public Path2D copy() { return new Path2D(this); } /** * {@inheritDoc} * * Note that this method may return false when the geometry of the * given {@code Path2D} is identical to the geometry of this object * but is expressed in a different way. This method will only return * true when the internal representation of this object is exactly the * same as that of the given object. */ @Override public boolean equals(Object obj) { if (obj == this) { return true; } if (obj instanceof Path2D) { Path2D p = (Path2D)obj; if (p.numTypes == this.numTypes && p.numCoords == this.numCoords && p.windingRule == this.windingRule) { for (int i = 0; i < numTypes; i++) { if (p.pointTypes[i] != this.pointTypes[i]) { return false; } } for (int i = 0; i < numCoords; i++) { if (p.floatCoords[i] != this.floatCoords[i]) { return false; } } return true; } } return false; } @Override public int hashCode() { int hash = 7; hash = 11 * hash + numTypes; hash = 11 * hash + numCoords; hash = 11 * hash + windingRule; for (int i = 0; i < numTypes; i++) { hash = 11 * hash + pointTypes[i]; } for (int i = 0; i < numCoords; i++) { hash = 11 * hash + Float.floatToIntBits(floatCoords[i]); } return hash; } /** * Tests if the specified coordinates are inside the closed * boundary of the specified {@link PathIterator}. *

* This method provides a basic facility for implementors of * the {@link Shape} interface to implement support for the * {@link Shape#contains(double, double)} method. * * @param pi the specified {@code PathIterator} * @param x the specified X coordinate * @param y the specified Y coordinate * @return {@code true} if the specified coordinates are inside the * specified {@code PathIterator}; {@code false} otherwise */ public static boolean contains(PathIterator pi, float x, float y) { if (x * 0f + y * 0f == 0f) { /* N * 0.0 is 0.0 only if N is finite. * Here we know that both x and y are finite. */ int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 1); int cross = Shape.pointCrossingsForPath(pi, x, y); return ((cross & mask) != 0); } else { /* Either x or y was infinite or NaN. * A NaN always produces a negative response to any test * and Infinity values cannot be "inside" any path so * they should return false as well. */ return false; } } /** * Tests if the specified {@link Point2D} is inside the closed * boundary of the specified {@link PathIterator}. *

* This method provides a basic facility for implementors of * the {@link Shape} interface to implement support for the * {@link Shape#contains(Point2D)} method. * * @param pi the specified {@code PathIterator} * @param p the specified {@code Point2D} * @return {@code true} if the specified coordinates are inside the * specified {@code PathIterator}; {@code false} otherwise */ public static boolean contains(PathIterator pi, Point2D p) { return contains(pi, p.x, p.y); } /** * {@inheritDoc} */ public final boolean contains(float x, float y) { if (x * 0f + y * 0f == 0f) { /* N * 0.0 is 0.0 only if N is finite. * Here we know that both x and y are finite. */ if (numTypes < 2) { return false; } int mask = (windingRule == WIND_NON_ZERO ? -1 : 1); return ((pointCrossings(x, y) & mask) != 0); } else { /* Either x or y was infinite or NaN. * A NaN always produces a negative response to any test * and Infinity values cannot be "inside" any path so * they should return false as well. */ return false; } } /** * {@inheritDoc} */ @Override public final boolean contains(Point2D p) { return contains(p.x, p.y); } /** * Tests if the specified rectangular area is entirely inside the * closed boundary of the specified {@link PathIterator}. *

* This method provides a basic facility for implementors of * the {@link Shape} interface to implement support for the * {@link Shape#contains(double, double, double, double)} method. *

* This method object may conservatively return false in * cases where the specified rectangular area intersects a * segment of the path, but that segment does not represent a * boundary between the interior and exterior of the path. * Such segments could lie entirely within the interior of the * path if they are part of a path with a {@link #WIND_NON_ZERO} * winding rule or if the segments are retraced in the reverse * direction such that the two sets of segments cancel each * other out without any exterior area falling between them. * To determine whether segments represent true boundaries of * the interior of the path would require extensive calculations * involving all of the segments of the path and the winding * rule and are thus beyond the scope of this implementation. * * @param pi the specified {@code PathIterator} * @param x the specified X coordinate * @param y the specified Y coordinate * @param w the width of the specified rectangular area * @param h the height of the specified rectangular area * @return {@code true} if the specified {@code PathIterator} contains * the specified rectangluar area; {@code false} otherwise. */ public static boolean contains(PathIterator pi, float x, float y, float w, float h) { if (java.lang.Float.isNaN(x+w) || java.lang.Float.isNaN(y+h)) { /* [xy]+[wh] is NaN if any of those values are NaN, * or if adding the two together would produce NaN * by virtue of adding opposing Infinte values. * Since we need to add them below, their sum must * not be NaN. * We return false because NaN always produces a * negative response to tests */ return false; } if (w <= 0 || h <= 0) { return false; } int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 2); int crossings = Shape.rectCrossingsForPath(pi, x, y, x+w, y+h); return (crossings != Shape.RECT_INTERSECTS && (crossings & mask) != 0); } /** * {@inheritDoc} *

* This method object may conservatively return false in * cases where the specified rectangular area intersects a * segment of the path, but that segment does not represent a * boundary between the interior and exterior of the path. * Such segments could lie entirely within the interior of the * path if they are part of a path with a {@link #WIND_NON_ZERO} * winding rule or if the segments are retraced in the reverse * direction such that the two sets of segments cancel each * other out without any exterior area falling between them. * To determine whether segments represent true boundaries of * the interior of the path would require extensive calculations * involving all of the segments of the path and the winding * rule and are thus beyond the scope of this implementation. */ public final boolean contains(float x, float y, float w, float h) { if (java.lang.Float.isNaN(x+w) || java.lang.Float.isNaN(y+h)) { /* [xy]+[wh] is NaN if any of those values are NaN, * or if adding the two together would produce NaN * by virtue of adding opposing Infinte values. * Since we need to add them below, their sum must * not be NaN. * We return false because NaN always produces a * negative response to tests */ return false; } if (w <= 0 || h <= 0) { return false; } int mask = (windingRule == WIND_NON_ZERO ? -1 : 2); int crossings = rectCrossings(x, y, x+w, y+h); return (crossings != Shape.RECT_INTERSECTS && (crossings & mask) != 0); } /** * Tests if the interior of the specified {@link PathIterator} * intersects the interior of a specified set of rectangular * coordinates. *

* This method provides a basic facility for implementors of * the {@link Shape} interface to implement support for the * {@link Shape#intersects(double, double, double, double)} method. *

* This method object may conservatively return true in * cases where the specified rectangular area intersects a * segment of the path, but that segment does not represent a * boundary between the interior and exterior of the path. * Such a case may occur if some set of segments of the * path are retraced in the reverse direction such that the * two sets of segments cancel each other out without any * interior area between them. * To determine whether segments represent true boundaries of * the interior of the path would require extensive calculations * involving all of the segments of the path and the winding * rule and are thus beyond the scope of this implementation. * * @param pi the specified {@code PathIterator} * @param x the specified X coordinate * @param y the specified Y coordinate * @param w the width of the specified rectangular coordinates * @param h the height of the specified rectangular coordinates * @return {@code true} if the specified {@code PathIterator} and * the interior of the specified set of rectangular * coordinates intersect each other; {@code false} otherwise. */ public static boolean intersects(PathIterator pi, float x, float y, float w, float h) { if (java.lang.Float.isNaN(x+w) || java.lang.Float.isNaN(y+h)) { /* [xy]+[wh] is NaN if any of those values are NaN, * or if adding the two together would produce NaN * by virtue of adding opposing Infinte values. * Since we need to add them below, their sum must * not be NaN. * We return false because NaN always produces a * negative response to tests */ return false; } if (w <= 0 || h <= 0) { return false; } int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 2); int crossings = Shape.rectCrossingsForPath(pi, x, y, x+w, y+h); return (crossings == Shape.RECT_INTERSECTS || (crossings & mask) != 0); } /** * {@inheritDoc} *

* This method object may conservatively return true in * cases where the specified rectangular area intersects a * segment of the path, but that segment does not represent a * boundary between the interior and exterior of the path. * Such a case may occur if some set of segments of the * path are retraced in the reverse direction such that the * two sets of segments cancel each other out without any * interior area between them. * To determine whether segments represent true boundaries of * the interior of the path would require extensive calculations * involving all of the segments of the path and the winding * rule and are thus beyond the scope of this implementation. */ public final boolean intersects(float x, float y, float w, float h) { if (java.lang.Float.isNaN(x+w) || java.lang.Float.isNaN(y+h)) { /* [xy]+[wh] is NaN if any of those values are NaN, * or if adding the two together would produce NaN * by virtue of adding opposing Infinte values. * Since we need to add them below, their sum must * not be NaN. * We return false because NaN always produces a * negative response to tests */ return false; } if (w <= 0 || h <= 0) { return false; } int mask = (windingRule == WIND_NON_ZERO ? -1 : 2); int crossings = rectCrossings(x, y, x+w, y+h); return (crossings == Shape.RECT_INTERSECTS || (crossings & mask) != 0); } /** * {@inheritDoc} *

* The iterator for this class is not multi-threaded safe, * which means that this {@code Path2D} class does not * guarantee that modifications to the geometry of this * {@code Path2D} object do not affect any iterations of * that geometry that are already in process. */ public PathIterator getPathIterator(BaseTransform tx, float flatness) { return new FlatteningPathIterator(getPathIterator(tx), flatness); } static abstract class Iterator implements PathIterator { int typeIdx; int pointIdx; Path2D path; Iterator(Path2D path) { this.path = path; } public int getWindingRule() { return path.getWindingRule(); } public boolean isDone() { return (typeIdx >= path.numTypes); } public void next() { int type = path.pointTypes[typeIdx++]; pointIdx += curvecoords[type]; } } public void setTo(Path2D otherPath) { numTypes = otherPath.numTypes; numCoords = otherPath.numCoords; if (numTypes > pointTypes.length) { pointTypes = new byte[numTypes]; } System.arraycopy(otherPath.pointTypes, 0, pointTypes, 0, numTypes); if (numCoords > floatCoords.length) { floatCoords = new float[numCoords]; } System.arraycopy(otherPath.floatCoords, 0, floatCoords, 0, numCoords); windingRule = otherPath.windingRule; moveX = otherPath.moveX; moveY = otherPath.moveY; prevX = otherPath.prevX; prevY = otherPath.prevY; currX = otherPath.currX; currY = otherPath.currY; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy