All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.sun.javafx.geom.QuadIterator Maven / Gradle / Ivy

There is a newer version: 24-ea+19
Show newest version
/*
 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.javafx.geom;

import java.util.NoSuchElementException;

import com.sun.javafx.geom.transform.BaseTransform;

/**
 * A utility class to iterate over the path segments of a quadratic curve
 * segment through the PathIterator interface.
 *
 * @version 10 Feb 1997
 */
class QuadIterator implements PathIterator {
    QuadCurve2D quad;
    BaseTransform transform;
    int index;

    QuadIterator(QuadCurve2D q, BaseTransform tx) {
        this.quad = q;
        this.transform = tx;
    }

    /**
     * Return the winding rule for determining the insideness of the
     * path.
     * @see #WIND_EVEN_ODD
     * @see #WIND_NON_ZERO
     */
    @Override
    public int getWindingRule() {
        return WIND_NON_ZERO;
    }

    /**
     * Tests if there are more points to read.
     * @return true if there are more points to read
     */
    @Override
    public boolean isDone() {
        return (index > 1);
    }

    /**
     * Moves the iterator to the next segment of the path forwards
     * along the primary direction of traversal as long as there are
     * more points in that direction.
     */
    @Override
    public void next() {
        ++index;
    }

    /**
     * Returns the coordinates and type of the current path segment in
     * the iteration.
     * The return value is the path segment type:
     * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE.
     * A float array of length 6 must be passed in and may be used to
     * store the coordinates of the point(s).
     * Each point is stored as a pair of float x,y coordinates.
     * SEG_MOVETO and SEG_LINETO types will return one point,
     * SEG_QUADTO will return two points,
     * SEG_CUBICTO will return 3 points
     * and SEG_CLOSE will not return any points.
     * @see #SEG_MOVETO
     * @see #SEG_LINETO
     * @see #SEG_QUADTO
     * @see #SEG_CUBICTO
     * @see #SEG_CLOSE
     */
    @Override
    public int currentSegment(float[] coords) {
        if (isDone()) {
            throw new NoSuchElementException("quad iterator iterator out of bounds");
        }
        int type;
        if (index == 0) {
            coords[0] = quad.x1;
            coords[1] = quad.y1;
            type = SEG_MOVETO;
        } else {
            coords[0] = quad.ctrlx;
            coords[1] = quad.ctrly;
            coords[2] = quad.x2;
            coords[3] = quad.y2;
            type = SEG_QUADTO;
        }
        if (transform != null) {
            transform.transform(coords, 0, coords, 0, index == 0 ? 1 : 2);
        }
        return type;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy