com.sun.marlin.RendererNoAA Maven / Gradle / Ivy
/*
* Copyright (c) 2007, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.marlin;
import static com.sun.marlin.OffHeapArray.SIZE_INT;
import sun.misc.Unsafe;
// FIXME: We must replace the terminally deprecated sun.misc.Unsafe
// memory access methods; see JDK-8334137
@SuppressWarnings("removal")
public final class RendererNoAA implements MarlinRenderer, MarlinConst {
static final boolean DISABLE_RENDER = false;
private static final int ALL_BUT_LSB = 0xFFFFFFFE;
private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
private static final double POWER_2_TO_32 = 0x1.0p32d;
private static final double RDR_OFFSET_X = 0.5d;
private static final double RDR_OFFSET_Y = 0.5d;
// common to all types of input path segments.
// OFFSET as bytes
// only integer values:
public static final long OFF_CURX_OR = 0;
public static final long OFF_ERROR = OFF_CURX_OR + SIZE_INT;
public static final long OFF_BUMP_X = OFF_ERROR + SIZE_INT;
public static final long OFF_BUMP_ERR = OFF_BUMP_X + SIZE_INT;
public static final long OFF_NEXT = OFF_BUMP_ERR + SIZE_INT;
public static final long OFF_YMAX = OFF_NEXT + SIZE_INT;
// size of one edge in bytes
public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
// curve break into lines
// cubic error in subpixels to decrement step
private static final double CUB_DEC_ERR_SUBPIX
= MarlinProperties.getCubicDecD2() * (1.0d / 8.0d); // 1 pixel
// cubic error in subpixels to increment step
private static final double CUB_INC_ERR_SUBPIX
= MarlinProperties.getCubicIncD1() * (1.0d / 8.0d); // 0.4 pixel
// TestNonAARasterization (JDK-8170879): cubics
// bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
// 2018
// 1.0 / 0.2: bad paths (67194/100000 == 67,19%, 117394 bad pixels (avg = 1,75 - max = 9), 4042 warnings (avg = 0,06)
// cubic bind length to decrement step
public static final double CUB_DEC_BND
= 8.0d * CUB_DEC_ERR_SUBPIX;
// cubic bind length to increment step
public static final double CUB_INC_BND
= 8.0d * CUB_INC_ERR_SUBPIX;
// cubic countlg
public static final int CUB_COUNT_LG = 2;
// cubic count = 2^countlg
private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
// cubic count^2 = 4^countlg
private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
// cubic count^3 = 8^countlg
private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
// cubic dt = 1 / count
private static final double CUB_INV_COUNT = 1.0d / CUB_COUNT;
// cubic dt^2 = 1 / count^2 = 1 / 4^countlg
private static final double CUB_INV_COUNT_2 = 1.0d / CUB_COUNT_2;
// cubic dt^3 = 1 / count^3 = 1 / 8^countlg
private static final double CUB_INV_COUNT_3 = 1.0d / CUB_COUNT_3;
// quad break into lines
// quadratic error in subpixels
private static final double QUAD_DEC_ERR_SUBPIX
= MarlinProperties.getQuadDecD2() * (1.0d / 8.0d); // 0.5 pixel
// TestNonAARasterization (JDK-8170879): quads
// bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
// 2018
// 0.50px = bad paths (62915/100000 == 62,92%, 103810 bad pixels (avg = 1,65), 6512 warnings (avg = 0,10)
// quadratic bind length to decrement step
public static final double QUAD_DEC_BND
= 8.0d * QUAD_DEC_ERR_SUBPIX;
//----------------------------------------------------------------------------
// SCAN LINE
//----------------------------------------------------------------------------
// crossings ie subpixel edge x coordinates
private int[] crossings;
// auxiliary storage for crossings (merge sort)
private int[] aux_crossings;
// indices into the segment pointer lists. They indicate the "active"
// sublist in the segment lists (the portion of the list that contains
// all the segments that cross the next scan line).
private int edgeCount;
private int[] edgePtrs;
// auxiliary storage for edge pointers (merge sort)
private int[] aux_edgePtrs;
// max used for both edgePtrs and crossings (stats only)
private int activeEdgeMaxUsed;
// crossings ref (dirty)
private final ArrayCacheInt.Reference crossings_ref;
// edgePtrs ref (dirty)
private final ArrayCacheInt.Reference edgePtrs_ref;
// merge sort initial arrays (large enough to satisfy most usages) (1024)
// aux_crossings ref (dirty)
private final ArrayCacheInt.Reference aux_crossings_ref;
// aux_edgePtrs ref (dirty)
private final ArrayCacheInt.Reference aux_edgePtrs_ref;
//----------------------------------------------------------------------------
// EDGE LIST
//----------------------------------------------------------------------------
private int edgeMinY = Integer.MAX_VALUE;
private int edgeMaxY = Integer.MIN_VALUE;
private double edgeMinX = Double.POSITIVE_INFINITY;
private double edgeMaxX = Double.NEGATIVE_INFINITY;
// edges [ints] stored in off-heap memory
private final OffHeapArray edges;
private int[] edgeBuckets;
private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
// used range for edgeBuckets / edgeBucketCounts
private int buckets_minY;
private int buckets_maxY;
// edgeBuckets ref (clean)
private final ArrayCacheIntClean.Reference edgeBuckets_ref;
// edgeBucketCounts ref (clean)
private final ArrayCacheIntClean.Reference edgeBucketCounts_ref;
boolean useRLE = false;
// Flattens using adaptive forward differencing. This only carries out
// one iteration of the AFD loop. All it does is update AFD variables (i.e.
// X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
private void quadBreakIntoLinesAndAdd(double x0, double y0,
final Curve c,
final double x2, final double y2)
{
int count = 1; // dt = 1 / count
// maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
double maxDD = Math.abs(c.dbx) + Math.abs(c.dby);
final double _DEC_BND = QUAD_DEC_BND;
while (maxDD >= _DEC_BND) {
// divide step by half:
maxDD /= 4.0d; // error divided by 2^2 = 4
count <<= 1;
if (DO_STATS) {
rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
}
}
final int nL = count; // line count
if (count > 1) {
final double icount = 1.0d / count; // dt
final double icount2 = icount * icount; // dt^2
final double ddx = c.dbx * icount2;
final double ddy = c.dby * icount2;
double dx = c.bx * icount2 + c.cx * icount;
double dy = c.by * icount2 + c.cy * icount;
// we use x0, y0 to walk the line
for (double x1 = x0, y1 = y0; --count > 0; dx += ddx, dy += ddy) {
x1 += dx;
y1 += dy;
addLine(x0, y0, x1, y1);
x0 = x1;
y0 = y1;
}
}
addLine(x0, y0, x2, y2);
if (DO_STATS) {
rdrCtx.stats.stat_rdr_quadBreak.add(nL);
}
}
// x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
// using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
// numerical errors, and our callers already have the exact values.
// Another alternative would be to pass all the control points, and call
// c.set here, but then too many numbers are passed around.
private void curveBreakIntoLinesAndAdd(double x0, double y0,
final Curve c,
final double x3, final double y3)
{
int count = CUB_COUNT;
final double icount = CUB_INV_COUNT; // dt
final double icount2 = CUB_INV_COUNT_2; // dt^2
final double icount3 = CUB_INV_COUNT_3; // dt^3
// the dx and dy refer to forward differencing variables, not the last
// coefficients of the "points" polynomial
double dddx, dddy, ddx, ddy, dx, dy;
dddx = 2.0d * c.dax * icount3;
dddy = 2.0d * c.day * icount3;
ddx = dddx + c.dbx * icount2;
ddy = dddy + c.dby * icount2;
dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
int nL = 0; // line count
final double _DEC_BND = CUB_DEC_BND;
final double _INC_BND = CUB_INC_BND;
// we use x0, y0 to walk the line
for (double x1 = x0, y1 = y0; count > 0; ) {
// inc / dec => ratio ~ 5 to minimize upscale / downscale but minimize edges
// double step:
// can only do this on even "count" values, because we must divide count by 2
while ((count % 2 == 0)
&& ((Math.abs(ddx) + Math.abs(ddy)) <= _INC_BND)) {
dx = 2.0d * dx + ddx;
dy = 2.0d * dy + ddy;
ddx = 4.0d * (ddx + dddx);
ddy = 4.0d * (ddy + dddy);
dddx *= 8.0d;
dddy *= 8.0d;
count >>= 1;
if (DO_STATS) {
rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
}
}
// divide step by half:
while ((Math.abs(ddx) + Math.abs(ddy)) >= _DEC_BND) {
dddx /= 8.0d;
dddy /= 8.0d;
ddx = ddx / 4.0d - dddx;
ddy = ddy / 4.0d - dddy;
dx = (dx - ddx) / 2.0d;
dy = (dy - ddy) / 2.0d;
count <<= 1;
if (DO_STATS) {
rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
}
}
if (--count == 0) {
break;
}
x1 += dx;
y1 += dy;
dx += ddx;
dy += ddy;
ddx += dddx;
ddy += dddy;
addLine(x0, y0, x1, y1);
x0 = x1;
y0 = y1;
}
addLine(x0, y0, x3, y3);
if (DO_STATS) {
rdrCtx.stats.stat_rdr_curveBreak.add(nL + 1);
}
}
private void addLine(double x1, double y1, double x2, double y2) {
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_addLine.start();
}
if (DO_STATS) {
rdrCtx.stats.stat_rdr_addLine.add(1);
}
int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
if (y2 < y1) {
or = 0;
double tmp = y2;
y2 = y1;
y1 = tmp;
tmp = x2;
x2 = x1;
x1 = tmp;
}
// convert subpixel coordinates [double] into pixel positions [int]
// The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
// Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
// ceil(y1) or ceil(y2)
// upper integer (inclusive)
final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
// note: use boundsMaxY (last Y exclusive) to compute correct coverage
// upper integer (exclusive)
final int lastCrossing = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
/* skip horizontal lines in pixel space and clip edges
out of y range [boundsMinY; boundsMaxY] */
if (firstCrossing >= lastCrossing) {
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_addLine.stop();
}
if (DO_STATS) {
rdrCtx.stats.stat_rdr_addLine_skip.add(1);
}
return;
}
// edge min/max X/Y are in subpixel space (half-open interval):
// note: Use integer crossings to ensure consistent range within
// edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
if (firstCrossing < edgeMinY) {
edgeMinY = firstCrossing;
}
if (lastCrossing > edgeMaxY) {
edgeMaxY = lastCrossing;
}
final double slope = (x1 - x2) / (y1 - y2);
if (slope >= 0.0d) { // <==> x1 < x2
if (x1 < edgeMinX) {
edgeMinX = x1;
}
if (x2 > edgeMaxX) {
edgeMaxX = x2;
}
} else {
if (x2 < edgeMinX) {
edgeMinX = x2;
}
if (x1 > edgeMaxX) {
edgeMaxX = x1;
}
}
// local variables for performance:
final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
final OffHeapArray _edges = edges;
// get free pointer (ie length in bytes)
final int edgePtr = _edges.used;
// use substraction to avoid integer overflow:
if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
// suppose _edges.length > _SIZEOF_EDGE_BYTES
// so doubling size is enough to add needed bytes
// note: throw IOOB if neededSize > 2Gb:
final long edgeNewSize = ArrayCacheConst.getNewLargeSize(
_edges.length,
edgePtr + _SIZEOF_EDGE_BYTES);
if (DO_STATS) {
rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
}
_edges.resize(edgeNewSize);
}
final Unsafe _unsafe = OffHeapArray.UNSAFE;
final long SIZE_INT = 4L;
long addr = _edges.address + edgePtr;
// The x value must be bumped up to its position at the next HPC we will evaluate.
// "firstcrossing" is the (sub)pixel number where the next crossing occurs
// thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
// so the Y distance we cover is "firstcrossing + 0.5 - trueY".
// Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
// y1 = trueY - 0.5
// trueY = y1 + 0.5
// firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
// = firstcrossing - y1
// The x coordinate at that HPC is then:
// x1_intercept = x1 + (firstcrossing - y1) * slope
// The next VPC is then given by:
// VPC index = ceil(x1_intercept - 0.5), or alternately
// VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
// epsilon is hard to pin down in floating point, but easy in fixed point, so if
// we convert to fixed point then these operations get easier:
// long x1_fixed = x1_intercept * 2^32; (fixed point 32.32 format)
// curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
// = fixed_floor(x1_fixed + 2^31 - 1)
// = fixed_floor(x1_fixed + 0x7FFFFFFF)
// and error = fixed_fract(x1_fixed + 0x7FFFFFFF)
final double x1_intercept = x1 + (firstCrossing - y1) * slope;
// inlined scalb(x1_intercept, 32):
final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
+ 0x7FFFFFFFL;
// curx:
// last bit corresponds to the orientation
_unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
addr += SIZE_INT;
_unsafe.putInt(addr, ((int) x1_fixed_biased) >>> 1);
addr += SIZE_INT;
// inlined scalb(slope, 32):
final long slope_fixed = (long) (POWER_2_TO_32 * slope);
// last bit set to 0 to keep orientation:
_unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
addr += SIZE_INT;
_unsafe.putInt(addr, ((int) slope_fixed) >>> 1);
addr += SIZE_INT;
final int[] _edgeBuckets = edgeBuckets;
final int[] _edgeBucketCounts = edgeBucketCounts;
final int _boundsMinY = boundsMinY;
// each bucket is a linked list. this method adds ptr to the
// start of the "bucket"th linked list.
final int bucketIdx = firstCrossing - _boundsMinY;
// pointer from bucket
_unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
addr += SIZE_INT;
// y max (exclusive)
_unsafe.putInt(addr, lastCrossing);
// Update buckets:
// directly the edge struct "pointer"
_edgeBuckets[bucketIdx] = edgePtr;
_edgeBucketCounts[bucketIdx] += 2; // 1 << 1
// last bit means edge end
_edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
// update free pointer (ie length in bytes)
_edges.used += _SIZEOF_EDGE_BYTES;
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_addLine.stop();
}
}
// END EDGE LIST
//----------------------------------------------------------------------------
// Bounds of the drawing region, at subpixel precision.
private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
// Current winding rule
private int windingRule;
// Current drawing position, i.e., final point of last segment
private double x0, y0;
// Position of most recent 'moveTo' command
private double sx0, sy0;
// per-thread renderer context
final RendererContext rdrCtx;
// dirty curve
private final Curve curve;
// clean alpha array (zero filled)
private int[] alphaLine;
// alphaLine ref (clean)
private final ArrayCacheIntClean.Reference alphaLine_ref;
private boolean enableBlkFlags = false;
private boolean prevUseBlkFlags = false;
/* block flags (0|1) */
private int[] blkFlags;
// blkFlags ref (clean)
private final ArrayCacheIntClean.Reference blkFlags_ref;
RendererNoAA(final RendererContext rdrCtx) {
this.rdrCtx = rdrCtx;
this.curve = rdrCtx.curve;
this.edges = rdrCtx.rdrMem.edges;
edgeBuckets_ref = rdrCtx.rdrMem.edgeBuckets_ref;
edgeBucketCounts_ref = rdrCtx.rdrMem.edgeBucketCounts_ref;
edgeBuckets = edgeBuckets_ref.initial;
edgeBucketCounts = edgeBucketCounts_ref.initial;
alphaLine_ref = rdrCtx.rdrMem.alphaLine_ref;
alphaLine = alphaLine_ref.initial;
crossings_ref = rdrCtx.rdrMem.crossings_ref;
aux_crossings_ref = rdrCtx.rdrMem.aux_crossings_ref;
edgePtrs_ref = rdrCtx.rdrMem.edgePtrs_ref;
aux_edgePtrs_ref = rdrCtx.rdrMem.aux_edgePtrs_ref;
crossings = crossings_ref.initial;
aux_crossings = aux_crossings_ref.initial;
edgePtrs = edgePtrs_ref.initial;
aux_edgePtrs = aux_edgePtrs_ref.initial;
blkFlags_ref = rdrCtx.rdrMem.blkFlags_ref;
blkFlags = blkFlags_ref.initial;
}
@Override
public RendererNoAA init(final int pix_boundsX, final int pix_boundsY,
final int pix_boundsWidth, final int pix_boundsHeight,
final int windingRule)
{
this.windingRule = windingRule;
// bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
this.boundsMinX = pix_boundsX;
this.boundsMaxX = pix_boundsX + pix_boundsWidth;
this.boundsMinY = pix_boundsY;
this.boundsMaxY = pix_boundsY + pix_boundsHeight;
if (DO_LOG_BOUNDS) {
MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
+ boundsMaxX + "[ [" + boundsMinY + " ... "
+ boundsMaxY + "[");
}
// see addLine: ceil(boundsMaxY) => boundsMaxY + 1
// +1 for edgeBucketCounts
final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
if (DO_STATS) {
rdrCtx.stats.stat_array_renderer_edgeBuckets
.add(edgeBucketsLength);
rdrCtx.stats.stat_array_renderer_edgeBucketCounts
.add(edgeBucketsLength);
}
edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
}
edgeMinY = Integer.MAX_VALUE;
edgeMaxY = Integer.MIN_VALUE;
edgeMinX = Double.POSITIVE_INFINITY;
edgeMaxX = Double.NEGATIVE_INFINITY;
// reset used mark:
edgeCount = 0;
activeEdgeMaxUsed = 0;
edges.used = 0;
// reset bbox:
bboxX0 = 0;
bboxX1 = 0;
return this; // fluent API
}
/**
* Disposes this renderer and recycle it clean up before reusing this instance
*/
@Override
public void dispose() {
if (DO_STATS) {
rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
rdrCtx.stats.stat_rdr_edges.add(edges.used);
rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
rdrCtx.stats.totalOffHeap += edges.length;
}
// Return arrays:
crossings = crossings_ref.putArray(crossings);
aux_crossings = aux_crossings_ref.putArray(aux_crossings);
edgePtrs = edgePtrs_ref.putArray(edgePtrs);
aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);
alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled
blkFlags = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled
if (edgeMinY != Integer.MAX_VALUE) {
// if context is maked as DIRTY:
if (rdrCtx.dirty) {
// may happen if an exception if thrown in the pipeline processing:
// clear completely buckets arrays:
buckets_minY = 0;
buckets_maxY = boundsMaxY - boundsMinY;
}
// clear only used part
edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY,
buckets_maxY);
edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts,
buckets_minY,
buckets_maxY + 1);
} else {
// unused arrays
edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
}
// At last: resize back off-heap edges to initial size
if (edges.length != INITIAL_EDGES_CAPACITY) {
// note: may throw OOME:
edges.resize(INITIAL_EDGES_CAPACITY);
}
if (DO_CLEAN_DIRTY) {
// Force zero-fill dirty arrays:
edges.fill(BYTE_0);
}
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_endRendering.stop();
}
}
private static double tosubpixx(final double pix_x) {
return pix_x;
}
private static double tosubpixy(final double pix_y) {
// shift y by -0.5 for fast ceil(y - 0.5):
return pix_y - 0.5d;
}
@Override
public void moveTo(final double pix_x0, final double pix_y0) {
closePath();
final double sx = tosubpixx(pix_x0);
final double sy = tosubpixy(pix_y0);
this.sx0 = sx;
this.sy0 = sy;
this.x0 = sx;
this.y0 = sy;
}
@Override
public void lineTo(final double pix_x1, final double pix_y1) {
final double x1 = tosubpixx(pix_x1);
final double y1 = tosubpixy(pix_y1);
addLine(x0, y0, x1, y1);
x0 = x1;
y0 = y1;
}
@Override
public void curveTo(final double pix_x1, final double pix_y1,
final double pix_x2, final double pix_y2,
final double pix_x3, final double pix_y3)
{
final double xe = tosubpixx(pix_x3);
final double ye = tosubpixy(pix_y3);
curve.set(x0, y0,
tosubpixx(pix_x1), tosubpixy(pix_y1),
tosubpixx(pix_x2), tosubpixy(pix_y2),
xe, ye);
curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
x0 = xe;
y0 = ye;
}
@Override
public void quadTo(final double pix_x1, final double pix_y1,
final double pix_x2, final double pix_y2)
{
final double xe = tosubpixx(pix_x2);
final double ye = tosubpixy(pix_y2);
curve.set(x0, y0,
tosubpixx(pix_x1), tosubpixy(pix_y1),
xe, ye);
quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
x0 = xe;
y0 = ye;
}
@Override
public void closePath() {
if (x0 != sx0 || y0 != sy0) {
addLine(x0, y0, sx0, sy0);
x0 = sx0;
y0 = sy0;
}
}
@Override
public void pathDone() {
closePath();
// call endRendering() to determine the boundaries:
endRendering();
}
private void _endRendering(final int ymin, final int ymax,
final MarlinAlphaConsumer ac)
{
if (DISABLE_RENDER) {
return;
}
// Get X bounds as true pixel boundaries to compute correct pixel coverage:
final int bboxx0 = bbox_spminX;
final int bboxx1 = bbox_spmaxX;
final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
// Useful when processing tile line by tile line
final int[] _alpha = alphaLine;
// local vars (performance):
final OffHeapArray _edges = edges;
final int[] _edgeBuckets = edgeBuckets;
final int[] _edgeBucketCounts = edgeBucketCounts;
int[] _crossings = this.crossings;
int[] _edgePtrs = this.edgePtrs;
// merge sort auxiliary storage:
int[] _aux_crossings = this.aux_crossings;
int[] _aux_edgePtrs = this.aux_edgePtrs;
// copy constants:
final long _OFF_ERROR = OFF_ERROR;
final long _OFF_BUMP_X = OFF_BUMP_X;
final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
final long _OFF_NEXT = OFF_NEXT;
final long _OFF_YMAX = OFF_YMAX;
final int _ALL_BUT_LSB = ALL_BUT_LSB;
final int _ERR_STEP_MAX = ERR_STEP_MAX;
// unsafe I/O:
final Unsafe _unsafe = OffHeapArray.UNSAFE;
final long addr0 = _edges.address;
long addr;
final int _MIN_VALUE = Integer.MIN_VALUE;
final int _MAX_VALUE = Integer.MAX_VALUE;
// Now we iterate through the scanlines. We must tell emitRow the coord
// of the first non-transparent pixel, so we must keep accumulators for
// the first and last pixels of the section of the current pixel row
// that we will emit.
// We also need to accumulate pix_bbox, but the iterator does it
// for us. We will just get the values from it once this loop is done
int minX = _MAX_VALUE;
int maxX = _MIN_VALUE;
int y = ymin;
int bucket = y - boundsMinY;
int numCrossings = this.edgeCount;
int edgePtrsLen = _edgePtrs.length;
int crossingsLen = _crossings.length;
int _arrayMaxUsed = activeEdgeMaxUsed;
int ptrLen = 0, newCount, ptrEnd;
int bucketcount, i, j, ecur;
int cross, lastCross;
int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
int low, high, mid, prevNumCrossings;
boolean useBinarySearch;
final int[] _blkFlags = blkFlags;
final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
final int _BLK_SIZE = BLOCK_SIZE;
final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
// Use block flags if large pixel span and few crossings:
// ie mean(distance between crossings) is high
boolean useBlkFlags = this.prevUseBlkFlags;
final int stroking = rdrCtx.stroking;
int lastY = -1; // last emited row
final DPQSSorterContext sorter = rdrCtx.sorterCtx;
boolean skipISort, useDPQS;
// Iteration on scanlines
for (; y < ymax; y++, bucket++) {
// --- from former ScanLineIterator.next()
bucketcount = _edgeBucketCounts[bucket];
// marker on previously sorted edges:
prevNumCrossings = numCrossings;
// bucketCount indicates new edge / edge end:
if (bucketcount != 0) {
if (DO_STATS) {
rdrCtx.stats.stat_rdr_activeEdges_updates.add(prevNumCrossings);
}
// last bit set to 1 means that edges ends
if ((bucketcount & 0x1) != 0) {
// eviction in active edge list
// cache edges[] address + offset
addr = addr0 + _OFF_YMAX;
for (i = 0, newCount = 0; i < prevNumCrossings; i++) {
// get the pointer to the edge
ecur = _edgePtrs[i];
// random access so use unsafe:
if (_unsafe.getInt(addr + ecur) > y) {
_edgePtrs[newCount++] = ecur;
}
}
// update marker on sorted edges minus removed edges:
prevNumCrossings = numCrossings = newCount;
}
ptrLen = bucketcount >> 1; // number of new edge
if (ptrLen != 0) {
if (DO_STATS) {
rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen);
if (ptrLen > 10) {
rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen);
}
}
ptrEnd = numCrossings + ptrLen;
if (edgePtrsLen < ptrEnd) {
if (DO_STATS) {
rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd);
}
this.edgePtrs = _edgePtrs
= edgePtrs_ref.widenArray(_edgePtrs, edgePtrsLen, // bad mark ? TODO: fix edge ptr mark
ptrEnd);
edgePtrsLen = _edgePtrs.length;
// Get larger auxiliary storage:
aux_edgePtrs_ref.putArray(_aux_edgePtrs);
// use ArrayCache.getNewSize() to use the same growing
// factor than widenArray():
if (DO_STATS) {
rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd);
}
this.aux_edgePtrs = _aux_edgePtrs
= aux_edgePtrs_ref.getArray(
ArrayCacheConst.getNewSize(numCrossings, ptrEnd)
);
}
// cache edges[] address + offset
addr = addr0 + _OFF_NEXT;
// add new edges to active edge list:
for (ecur = _edgeBuckets[bucket];
numCrossings < ptrEnd; numCrossings++)
{
// store the pointer to the edge
_edgePtrs[numCrossings] = ecur;
// random access so use unsafe:
ecur = _unsafe.getInt(addr + ecur);
}
if (crossingsLen < numCrossings) {
// Get larger array:
crossings_ref.putArray(_crossings);
if (DO_STATS) {
rdrCtx.stats.stat_array_renderer_crossings
.add(numCrossings);
}
this.crossings = _crossings
= crossings_ref.getArray(numCrossings);
// Get larger auxiliary storage:
aux_crossings_ref.putArray(_aux_crossings);
if (DO_STATS) {
rdrCtx.stats.stat_array_renderer_aux_crossings
.add(numCrossings);
}
this.aux_crossings = _aux_crossings
= aux_crossings_ref.getArray(numCrossings);
crossingsLen = _crossings.length;
}
if (DO_STATS) {
// update max used mark
if (numCrossings > _arrayMaxUsed) {
_arrayMaxUsed = numCrossings;
}
}
} // ptrLen != 0
} // bucketCount != 0
if (numCrossings != 0) {
/*
* thresholds to switch to optimized merge sort
* for newly added edges + final merge pass.
*/
if (((numCrossings <= 40) || ((ptrLen <= 10) && (numCrossings <= MergeSort.DISABLE_ISORT_THRESHOLD)))) {
if (DO_STATS) {
rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
}
/*
* threshold to use binary insertion sort instead of
* straight insertion sort (to reduce minimize comparisons).
*/
useBinarySearch = (numCrossings >= 20);
// if small enough:
lastCross = _MIN_VALUE;
for (i = 0; i < numCrossings; i++) {
// get the pointer to the edge
ecur = _edgePtrs[i];
/* convert subpixel coordinates into pixel
positions for coming scanline */
/* note: it is faster to always update edges even
if it is removed from AEL for coming or last scanline */
// random access so use unsafe:
addr = addr0 + ecur; // ecur + OFF_F_CURX
// get current crossing:
curx = _unsafe.getInt(addr);
// update crossing with orientation at last bit:
cross = curx;
// Increment x using DDA (fixed point):
curx += _unsafe.getInt(addr + _OFF_BUMP_X);
// Increment error:
err = _unsafe.getInt(addr + _OFF_ERROR)
+ _unsafe.getInt(addr + _OFF_BUMP_ERR);
// Manual carry handling:
// keep sign and carry bit only and ignore last bit (preserve orientation):
_unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB));
_unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
if (DO_STATS) {
rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
}
// insertion sort of crossings:
if (cross < lastCross) {
if (DO_STATS) {
rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
}
/* use binary search for newly added edges
in crossings if arrays are large enough */
if (useBinarySearch && (i >= prevNumCrossings)) {
if (DO_STATS) {
rdrCtx.stats.stat_rdr_crossings_bsearch.add(i);
}
low = 0;
high = i - 1;
do {
// note: use signed shift (not >>>) for performance
// as indices are small enough to exceed Integer.MAX_VALUE
mid = (low + high) >> 1;
if (_crossings[mid] < cross) {
low = mid + 1;
} else {
high = mid - 1;
}
} while (low <= high);
for (j = i - 1; j >= low; j--) {
_crossings[j + 1] = _crossings[j];
_edgePtrs [j + 1] = _edgePtrs[j];
}
_crossings[low] = cross;
_edgePtrs [low] = ecur;
} else {
j = i - 1;
_crossings[i] = _crossings[j];
_edgePtrs[i] = _edgePtrs[j];
while ((--j >= 0) && (_crossings[j] > cross)) {
_crossings[j + 1] = _crossings[j];
_edgePtrs [j + 1] = _edgePtrs[j];
}
_crossings[j + 1] = cross;
_edgePtrs [j + 1] = ecur;
}
} else {
_crossings[i] = lastCross = cross;
}
}
} else {
if (DO_STATS) {
rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
rdrCtx.stats.hist_rdr_crossings_ratio
.add((1000 * ptrLen) / numCrossings);
rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
}
// Copy sorted data in auxiliary arrays
// and perform insertion sort on almost sorted data
// (ie i < prevNumCrossings):
skipISort = (prevNumCrossings >= MergeSort.DISABLE_ISORT_THRESHOLD);
useDPQS = MergeSort.USE_DPQS && (skipISort || (ptrLen >= MergeSort.DPQS_THRESHOLD));
if (DO_STATS && useDPQS) {
rdrCtx.stats.stat_rdr_crossings_dpqs.add((skipISort) ? numCrossings : ptrLen);
}
lastCross = _MIN_VALUE;
for (i = 0; i < numCrossings; i++) {
// get the pointer to the edge
ecur = _edgePtrs[i];
/* convert subpixel coordinates into pixel
positions for coming scanline */
/* note: it is faster to always update edges even
if it is removed from AEL for coming or last scanline */
// random access so use unsafe:
addr = addr0 + ecur; // ecur + OFF_F_CURX
// get current crossing:
curx = _unsafe.getInt(addr);
// update crossing with orientation at last bit:
cross = curx;
// Increment x using DDA (fixed point):
curx += _unsafe.getInt(addr + _OFF_BUMP_X);
// Increment error:
err = _unsafe.getInt(addr + _OFF_ERROR)
+ _unsafe.getInt(addr + _OFF_BUMP_ERR);
// Manual carry handling:
// keep sign and carry bit only and ignore last bit (preserve orientation):
_unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB));
_unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
if (DO_STATS) {
rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
}
if (skipISort) {
if (useDPQS) {
// simply store crossing as edgePtrs is in-place:
// will be sorted efficiently by DPQS later:
_crossings[i] = cross;
} else {
// store crossing/edgePtrs in auxiliary arrays:
// will be sorted efficiently by MergeSort later:
_aux_crossings[i] = cross;
_aux_edgePtrs [i] = ecur;
}
} else if (i >= prevNumCrossings) {
if (useDPQS) {
// store crossing/edgePtrs in auxiliary arrays:
// will be sorted efficiently by DPQS later:
_aux_crossings[i] = cross;
_aux_edgePtrs [i] = ecur;
} else {
// simply store crossing as edgePtrs is in-place:
// will be sorted efficiently by MergeSort later:
_crossings[i] = cross;
}
} else {
if (cross < lastCross) {
if (DO_STATS) {
rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
}
// (straight) insertion sort of crossings:
j = i - 1;
_aux_crossings[i] = _aux_crossings[j];
_aux_edgePtrs [i] = _aux_edgePtrs[j];
while ((--j >= 0) && (_aux_crossings[j] > cross)) {
_aux_crossings[j + 1] = _aux_crossings[j];
_aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
}
_aux_crossings[j + 1] = cross;
_aux_edgePtrs [j + 1] = ecur;
} else {
// auxiliary storage:
_aux_crossings[i] = lastCross = cross;
_aux_edgePtrs [i] = ecur;
}
}
}
// use Mergesort using auxiliary arrays (sort only right part)
MergeSort.mergeSortNoCopy(_crossings, _edgePtrs,
_aux_crossings, _aux_edgePtrs,
numCrossings, prevNumCrossings,
skipISort, sorter, useDPQS
);
}
// reset ptrLen
ptrLen = 0;
// --- from former ScanLineIterator.next()
/* note: bboxx0 and bboxx1 must be pixel boundaries
to have correct coverage computation */
// right shift on crossings to get the x-coordinate:
curxo = _crossings[0];
x0 = curxo >> 1;
if (x0 < minX) {
minX = x0; // subpixel coordinate
}
x1 = _crossings[numCrossings - 1] >> 1;
if (x1 > maxX) {
maxX = x1; // subpixel coordinate
}
// compute pixel coverages
prev = curx = x0;
// to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
// last bit contains orientation (0 or 1)
crorientation = ((curxo & 0x1) << 1) - 1;
if (windingRuleEvenOdd) {
sum = crorientation;
// Even Odd winding rule: take care of mask ie sum(orientations)
for (i = 1; i < numCrossings; i++) {
curxo = _crossings[i];
curx = curxo >> 1;
// to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
// last bit contains orientation (0 or 1)
crorientation = ((curxo & 0x1) << 1) - 1;
if ((sum & 0x1) != 0) {
// TODO: perform line clipping on left-right sides
// to avoid such bound checks:
x0 = (prev > bboxx0) ? prev : bboxx0;
if (curx < bboxx1) {
x1 = curx;
} else {
x1 = bboxx1;
// skip right side (fast exit loop):
i = numCrossings;
}
if (x0 < x1) {
x0 -= bboxx0; // turn x0, x1 from coords to indices
x1 -= bboxx0; // in the alpha array.
_alpha[x0] += 1;
_alpha[x1] -= 1;
if (useBlkFlags) {
// flag used blocks:
// note: block processing handles extra pixel:
_blkFlags[x0 >> _BLK_SIZE_LG] = 1;
_blkFlags[x1 >> _BLK_SIZE_LG] = 1;
}
}
}
sum += crorientation;
prev = curx;
}
} else {
// Non-zero winding rule: optimize that case (default)
// and avoid processing intermediate crossings
for (i = 1, sum = 0;; i++) {
sum += crorientation;
if (sum != 0) {
// prev = min(curx)
if (prev > curx) {
prev = curx;
}
} else {
// TODO: perform line clipping on left-right sides
// to avoid such bound checks:
x0 = (prev > bboxx0) ? prev : bboxx0;
if (curx < bboxx1) {
x1 = curx;
} else {
x1 = bboxx1;
// skip right side (fast exit loop):
i = numCrossings;
}
if (x0 < x1) {
x0 -= bboxx0; // turn x0, x1 from coords to indices
x1 -= bboxx0; // in the alpha array.
_alpha[x0] += 1;
_alpha[x1] -= 1;
if (useBlkFlags) {
// flag used blocks:
// note: block processing handles extra pixel:
_blkFlags[x0 >> _BLK_SIZE_LG] = 1;
_blkFlags[x1 >> _BLK_SIZE_LG] = 1;
}
}
prev = _MAX_VALUE;
}
if (i == numCrossings) {
break;
}
curxo = _crossings[i];
curx = curxo >> 1;
// to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
// last bit contains orientation (0 or 1)
crorientation = ((curxo & 0x1) << 1) - 1;
}
}
} // numCrossings > 0
// even if this last row had no crossings, alpha will be zeroed
// from the last emitRow call. But this doesn't matter because
// maxX < minX, so no row will be emitted to the AlphaConsumer.
if (true) {
lastY = y;
// convert subpixel to pixel coordinate within boundaries:
minX = FloatMath.max(minX, bboxx0);
maxX = FloatMath.min(maxX, bboxx1);
if (maxX >= minX) {
// note: alpha array will be zeroed by copyAARow()
// +1 because alpha [pix_minX; pix_maxX[
// fix range [x0; x1[
// note: if x1=bboxx1, then alpha is written up to bboxx1+1
// inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
// (normally so never cleared below)
copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags, ac);
// speculative for next pixel row (scanline coherence):
if (_enableBlkFlagsHeuristics) {
// Use block flags if large pixel span and few crossings:
// ie mean(distance between crossings) is larger than
// 1 block size;
// fast check width:
maxX -= minX;
// if stroking: numCrossings /= 2
// => shift numCrossings by 1
// condition = (width / (numCrossings - 1)) > blockSize
useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
(((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
if (DO_STATS) {
tmp = FloatMath.max(1,
((numCrossings >> stroking) - 1));
rdrCtx.stats.hist_tile_generator_encoding_dist
.add(maxX / tmp);
}
}
} else {
ac.clearAlphas(lastY);
}
minX = _MAX_VALUE;
maxX = _MIN_VALUE;
}
} // scan line iterator
// Emit final row
y--;
// convert subpixel to pixel coordinate within boundaries:
minX = FloatMath.max(minX, bboxx0);
maxX = FloatMath.min(maxX, bboxx1);
if (maxX >= minX) {
// note: alpha array will be zeroed by copyAARow()
// +1 because alpha [pix_minX; pix_maxX[
// fix range [x0; x1[
// note: if x1=bboxx1, then alpha is written up to bboxx1+1
// inclusive: alpha[bboxx1] ignored then cleared and
// alpha[bboxx1+1] == 0 (normally so never cleared after)
copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags, ac);
} else if (y != lastY) {
ac.clearAlphas(y);
}
// update member:
edgeCount = numCrossings;
prevUseBlkFlags = useBlkFlags;
if (DO_STATS) {
// update max used mark
activeEdgeMaxUsed = _arrayMaxUsed;
}
}
void endRendering() {
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_endRendering.start();
}
if (edgeMinY == Integer.MAX_VALUE) {
return; // undefined edges bounds
}
// bounds as half-open intervals
final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5d), boundsMinX);
final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5d), boundsMaxX);
// edge Min/Max Y are already rounded to subpixels within bounds:
final int spminY = edgeMinY;
final int spmaxY = edgeMaxY;
buckets_minY = spminY - boundsMinY;
buckets_maxY = spmaxY - boundsMinY;
if (DO_LOG_BOUNDS) {
MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
+ "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
MarlinUtils.logInfo("spXY = [" + spminX + " ... " + spmaxX
+ "[ [" + spminY + " ... " + spmaxY + "[");
}
// test clipping for shapes out of bounds
if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
return;
}
// half open intervals
// inclusive:
final int pminX = spminX;
// exclusive:
final int pmaxX = spmaxX;
// inclusive:
final int pminY = spminY;
// exclusive:
final int pmaxY = spmaxY;
// store BBox to answer ptg.getBBox():
initConsumer(pminX, pminY, pmaxX, pmaxY);
// Heuristics for using block flags:
if (ENABLE_BLOCK_FLAGS) {
enableBlkFlags = this.useRLE;
prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
if (enableBlkFlags) {
// ensure blockFlags array is large enough:
// note: +2 to ensure enough space left at end
final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
if (blkLen > INITIAL_ARRAY) {
blkFlags = blkFlags_ref.getArray(blkLen);
}
}
}
// memorize the rendering bounding box:
/* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
to have correct coverage computation */
// inclusive:
bbox_spminX = pminX;
// exclusive:
bbox_spmaxX = pmaxX;
// inclusive:
bbox_spminY = spminY;
// exclusive:
bbox_spmaxY = spmaxY;
if (DO_LOG_BOUNDS) {
MarlinUtils.logInfo("pXY = [" + pminX + " ... " + pmaxX
+ "[ [" + pminY + " ... " + pmaxY + "[");
MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
+ bbox_spmaxX + "[ [" + bbox_spminY + " ... "
+ bbox_spmaxY + "[");
}
// Prepare alpha line:
// add 2 to better deal with the last pixel in a pixel row.
final int width = (pmaxX - pminX) + 2;
// Useful when processing tile line by tile line
if (width > INITIAL_AA_ARRAY) {
if (DO_STATS) {
rdrCtx.stats.stat_array_renderer_alphaline.add(width);
}
alphaLine = alphaLine_ref.getArray(width);
}
}
void initConsumer(int minx, int miny, int maxx, int maxy)
{
// assert maxy >= miny && maxx >= minx;
bboxX0 = minx;
bboxX1 = maxx;
bboxY0 = miny;
bboxY1 = maxy;
final int width = (maxx - minx);
if (FORCE_NO_RLE) {
useRLE = false;
} else if (FORCE_RLE) {
useRLE = true;
} else {
// heuristics: use both bbox area and complexity
// ie number of primitives:
// fast check min width:
useRLE = (width > RLE_MIN_WIDTH);
}
}
private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
@Override
public void produceAlphas(final MarlinAlphaConsumer ac) {
ac.setMaxAlpha(1);
if (enableBlkFlags && !ac.supportBlockFlags()) {
// consumer does not support block flag optimization:
enableBlkFlags = false;
prevUseBlkFlags = false;
}
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_endRendering_Y.start();
}
// Process all scan lines:
_endRendering(bbox_spminY, bbox_spmaxY, ac);
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_endRendering_Y.stop();
}
}
void copyAARow(final int[] alphaRow,
final int pix_y, final int pix_from, final int pix_to,
final boolean useBlockFlags,
final MarlinAlphaConsumer ac)
{
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_copyAARow.start();
}
if (DO_STATS) {
rdrCtx.stats.stat_cache_rowAA.add(pix_to - pix_from);
}
if (useBlockFlags) {
if (DO_STATS) {
rdrCtx.stats.hist_tile_generator_encoding.add(1);
}
ac.setAndClearRelativeAlphas(blkFlags, alphaRow, pix_y, pix_from, pix_to);
} else {
if (DO_STATS) {
rdrCtx.stats.hist_tile_generator_encoding.add(0);
}
ac.setAndClearRelativeAlphas(alphaRow, pix_y, pix_from, pix_to);
}
if (DO_MONITORS) {
rdrCtx.stats.mon_rdr_copyAARow.stop();
}
}
// output pixel bounding box:
int bboxX0, bboxX1, bboxY0, bboxY1;
@Override
public int getOutpixMinX() {
return bboxX0;
}
@Override
public int getOutpixMaxX() {
return bboxX1;
}
@Override
public int getOutpixMinY() {
return bboxY0;
}
@Override
public int getOutpixMaxY() {
return bboxY1;
}
@Override
public double getOffsetX() {
return RDR_OFFSET_X;
}
@Override
public double getOffsetY() {
return RDR_OFFSET_Y;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy