All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.sun.javafx.geom.Order3 Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.javafx.geom;

import java.util.Vector;

final class Order3 extends Curve {
    private double x0;
    private double y0;
    private double cx0;
    private double cy0;
    private double cx1;
    private double cy1;
    private double x1;
    private double y1;

    private double xmin;
    private double xmax;

    private double xcoeff0;
    private double xcoeff1;
    private double xcoeff2;
    private double xcoeff3;

    private double ycoeff0;
    private double ycoeff1;
    private double ycoeff2;
    private double ycoeff3;

    public static void insert(Vector curves, double tmp[],
                              double x0, double y0,
                              double cx0, double cy0,
                              double cx1, double cy1,
                              double x1, double y1,
                              int direction)
    {
        int numparams = getHorizontalParams(y0, cy0, cy1, y1, tmp);
        if (numparams == 0) {
            // We are using addInstance here to avoid inserting horisontal
            // segments
            addInstance(curves, x0, y0, cx0, cy0, cx1, cy1, x1, y1, direction);
            return;
        }
        // Store coordinates for splitting at tmp[3..10]
        tmp[3] = x0;  tmp[4]  = y0;
        tmp[5] = cx0; tmp[6]  = cy0;
        tmp[7] = cx1; tmp[8]  = cy1;
        tmp[9] = x1;  tmp[10] = y1;
        double t = tmp[0];
        if (numparams > 1 && t > tmp[1]) {
            // Perform a "2 element sort"...
            tmp[0] = tmp[1];
            tmp[1] = t;
            t = tmp[0];
        }
        split(tmp, 3, t);
        if (numparams > 1) {
            // Recalculate tmp[1] relative to the range [tmp[0]...1]
            t = (tmp[1] - t) / (1 - t);
            split(tmp, 9, t);
        }
        int index = 3;
        if (direction == DECREASING) {
            index += numparams * 6;
        }
        while (numparams >= 0) {
            addInstance(curves,
                        tmp[index + 0], tmp[index + 1],
                        tmp[index + 2], tmp[index + 3],
                        tmp[index + 4], tmp[index + 5],
                        tmp[index + 6], tmp[index + 7],
                        direction);
            numparams--;
            if (direction == INCREASING) {
                index += 6;
            } else {
                index -= 6;
            }
        }
    }

    public static void addInstance(Vector curves,
                                   double x0, double y0,
                                   double cx0, double cy0,
                                   double cx1, double cy1,
                                   double x1, double y1,
                                   int direction) {
        if (y0 > y1) {
            curves.add(new Order3(x1, y1, cx1, cy1, cx0, cy0, x0, y0,
                                  -direction));
        } else if (y1 > y0) {
            curves.add(new Order3(x0, y0, cx0, cy0, cx1, cy1, x1, y1,
                                  direction));
        }
    }

    /**
     * [A double version of what is in QuadCurve2D...]
     * Solves the quadratic whose coefficients are in the eqn
     * array and places the non-complex roots into the res
     * array, returning the number of roots.
     * The quadratic solved is represented by the equation:
     * 
     *     eqn = {C, B, A};
     *     ax^2 + bx + c = 0
     * 
* A return value of -1 is used to distinguish a constant * equation, which might be always 0 or never 0, from an equation that * has no zeroes. * @param eqn the specified array of coefficients to use to solve * the quadratic equation * @param res the array that contains the non-complex roots * resulting from the solution of the quadratic equation * @return the number of roots, or -1 if the equation is * a constant. */ public static int solveQuadratic(double eqn[], double res[]) { double a = eqn[2]; double b = eqn[1]; double c = eqn[0]; int roots = 0; if (a == 0f) { // The quadratic parabola has degenerated to a line. if (b == 0f) { // The line has degenerated to a constant. return -1; } res[roots++] = -c / b; } else { // From Numerical Recipes, 5.6, Quadratic and Cubic Equations double d = b * b - 4f * a * c; if (d < 0f) { // If d < 0.0, then there are no roots return 0; } d = Math.sqrt(d); // For accuracy, calculate one root using: // (-b +/- d) / 2a // and the other using: // 2c / (-b +/- d) // Choose the sign of the +/- so that b+d gets larger in magnitude if (b < 0f) { d = -d; } double q = (b + d) / -2f; // We already tested a for being 0 above res[roots++] = q / a; if (q != 0f) { res[roots++] = c / q; } } return roots; } /* * Return the count of the number of horizontal sections of the * specified cubic Bezier curve. Put the parameters for the * horizontal sections into the specified ret array. *

* If we examine the parametric equation in t, we have: * Py(t) = C0(1-t)^3 + 3CP0 t(1-t)^2 + 3CP1 t^2(1-t) + C1 t^3 * = C0 - 3C0t + 3C0t^2 - C0t^3 + * 3CP0t - 6CP0t^2 + 3CP0t^3 + * 3CP1t^2 - 3CP1t^3 + * C1t^3 * Py(t) = (C1 - 3CP1 + 3CP0 - C0) t^3 + * (3C0 - 6CP0 + 3CP1) t^2 + * (3CP0 - 3C0) t + * (C0) * If we take the derivative, we get: * Py(t) = Dt^3 + At^2 + Bt + C * dPy(t) = 3Dt^2 + 2At + B = 0 * 0 = 3*(C1 - 3*CP1 + 3*CP0 - C0)t^2 * + 2*(3*CP1 - 6*CP0 + 3*C0)t * + (3*CP0 - 3*C0) * 0 = 3*(C1 - 3*CP1 + 3*CP0 - C0)t^2 * + 3*2*(CP1 - 2*CP0 + C0)t * + 3*(CP0 - C0) * 0 = (C1 - CP1 - CP1 - CP1 + CP0 + CP0 + CP0 - C0)t^2 * + 2*(CP1 - CP0 - CP0 + C0)t * + (CP0 - C0) * 0 = (C1 - CP1 + CP0 - CP1 + CP0 - CP1 + CP0 - C0)t^2 * + 2*(CP1 - CP0 - CP0 + C0)t * + (CP0 - C0) * 0 = ((C1 - CP1) - (CP1 - CP0) - (CP1 - CP0) + (CP0 - C0))t^2 * + 2*((CP1 - CP0) - (CP0 - C0))t * + (CP0 - C0) * Note that this method will return 0 if the equation is a line, * which is either always horizontal or never horizontal. * Completely horizontal curves need to be eliminated by other * means outside of this method. */ public static int getHorizontalParams(double c0, double cp0, double cp1, double c1, double ret[]) { if (c0 <= cp0 && cp0 <= cp1 && cp1 <= c1) { return 0; } c1 -= cp1; cp1 -= cp0; cp0 -= c0; ret[0] = cp0; ret[1] = (cp1 - cp0) * 2; ret[2] = (c1 - cp1 - cp1 + cp0); int numroots = solveQuadratic(ret, ret); int j = 0; for (int i = 0; i < numroots; i++) { double t = ret[i]; // No splits at t==0 and t==1 if (t > 0 && t < 1) { if (j < i) { ret[j] = t; } j++; } } return j; } /* * Split the cubic Bezier stored at coords[pos...pos+7] representing * the parametric range [0..1] into two subcurves representing the * parametric subranges [0..t] and [t..1]. Store the results back * into the array at coords[pos...pos+7] and coords[pos+6...pos+13]. */ public static void split(double coords[], int pos, double t) { double x0, y0, cx0, cy0, cx1, cy1, x1, y1; coords[pos+12] = x1 = coords[pos+6]; coords[pos+13] = y1 = coords[pos+7]; cx1 = coords[pos+4]; cy1 = coords[pos+5]; x1 = cx1 + (x1 - cx1) * t; y1 = cy1 + (y1 - cy1) * t; x0 = coords[pos+0]; y0 = coords[pos+1]; cx0 = coords[pos+2]; cy0 = coords[pos+3]; x0 = x0 + (cx0 - x0) * t; y0 = y0 + (cy0 - y0) * t; cx0 = cx0 + (cx1 - cx0) * t; cy0 = cy0 + (cy1 - cy0) * t; cx1 = cx0 + (x1 - cx0) * t; cy1 = cy0 + (y1 - cy0) * t; cx0 = x0 + (cx0 - x0) * t; cy0 = y0 + (cy0 - y0) * t; coords[pos+2] = x0; coords[pos+3] = y0; coords[pos+4] = cx0; coords[pos+5] = cy0; coords[pos+6] = cx0 + (cx1 - cx0) * t; coords[pos+7] = cy0 + (cy1 - cy0) * t; coords[pos+8] = cx1; coords[pos+9] = cy1; coords[pos+10] = x1; coords[pos+11] = y1; } public Order3(double x0, double y0, double cx0, double cy0, double cx1, double cy1, double x1, double y1, int direction) { super(direction); // REMIND: Better accuracy in the root finding methods would // ensure that cys are in range. As it stands, they are never // more than "1 mantissa bit" out of range... if (cy0 < y0) cy0 = y0; if (cy1 > y1) cy1 = y1; this.x0 = x0; this.y0 = y0; this.cx0 = cx0; this.cy0 = cy0; this.cx1 = cx1; this.cy1 = cy1; this.x1 = x1; this.y1 = y1; xmin = Math.min(Math.min(x0, x1), Math.min(cx0, cx1)); xmax = Math.max(Math.max(x0, x1), Math.max(cx0, cx1)); xcoeff0 = x0; xcoeff1 = (cx0 - x0) * 3.0; xcoeff2 = (cx1 - cx0 - cx0 + x0) * 3.0; xcoeff3 = x1 - (cx1 - cx0) * 3.0 - x0; ycoeff0 = y0; ycoeff1 = (cy0 - y0) * 3.0; ycoeff2 = (cy1 - cy0 - cy0 + y0) * 3.0; ycoeff3 = y1 - (cy1 - cy0) * 3.0 - y0; YforT1 = YforT2 = YforT3 = y0; } @Override public int getOrder() { return 3; } @Override public double getXTop() { return x0; } @Override public double getYTop() { return y0; } @Override public double getXBot() { return x1; } @Override public double getYBot() { return y1; } @Override public double getXMin() { return xmin; } @Override public double getXMax() { return xmax; } @Override public double getX0() { return (direction == INCREASING) ? x0 : x1; } @Override public double getY0() { return (direction == INCREASING) ? y0 : y1; } public double getCX0() { return (direction == INCREASING) ? cx0 : cx1; } public double getCY0() { return (direction == INCREASING) ? cy0 : cy1; } public double getCX1() { return (direction == DECREASING) ? cx0 : cx1; } public double getCY1() { return (direction == DECREASING) ? cy0 : cy1; } @Override public double getX1() { return (direction == DECREASING) ? x0 : x1; } @Override public double getY1() { return (direction == DECREASING) ? y0 : y1; } private double TforY1; private double YforT1; private double TforY2; private double YforT2; private double TforY3; private double YforT3; /* * Solve the cubic whose coefficients are in the a,b,c,d fields and * return the first root in the range [0, 1]. * The cubic solved is represented by the equation: * x^3 + (ycoeff2)x^2 + (ycoeff1)x + (ycoeff0) = y * @return the first valid root (in the range [0, 1]) */ @Override public double TforY(double y) { if (y <= y0) return 0; if (y >= y1) return 1; if (y == YforT1) return TforY1; if (y == YforT2) return TforY2; if (y == YforT3) return TforY3; // From Numerical Recipes, 5.6, Quadratic and Cubic Equations if (ycoeff3 == 0.0) { // The cubic degenerated to quadratic (or line or ...). return Order2.TforY(y, ycoeff0, ycoeff1, ycoeff2); } double a = ycoeff2 / ycoeff3; double b = ycoeff1 / ycoeff3; double c = (ycoeff0 - y) / ycoeff3; int roots = 0; double Q = (a * a - 3.0 * b) / 9.0; double R = (2.0 * a * a * a - 9.0 * a * b + 27.0 * c) / 54.0; double R2 = R * R; double Q3 = Q * Q * Q; double a_3 = a / 3.0; double t; if (R2 < Q3) { double theta = Math.acos(R / Math.sqrt(Q3)); Q = -2.0 * Math.sqrt(Q); t = refine(a, b, c, y, Q * Math.cos(theta / 3.0) - a_3); if (t < 0) { t = refine(a, b, c, y, Q * Math.cos((theta + Math.PI * 2.0)/ 3.0) - a_3); } if (t < 0) { t = refine(a, b, c, y, Q * Math.cos((theta - Math.PI * 2.0)/ 3.0) - a_3); } } else { boolean neg = (R < 0.0); double S = Math.sqrt(R2 - Q3); if (neg) { R = -R; } double A = Math.pow(R + S, 1.0 / 3.0); if (!neg) { A = -A; } double B = (A == 0.0) ? 0.0 : (Q / A); t = refine(a, b, c, y, (A + B) - a_3); } if (t < 0) { //throw new InternalError("bad t"); double t0 = 0; double t1 = 1; while (true) { t = (t0 + t1) / 2; if (t == t0 || t == t1) { break; } double yt = YforT(t); if (yt < y) { t0 = t; } else if (yt > y) { t1 = t; } else { break; } } } if (t >= 0) { TforY3 = TforY2; YforT3 = YforT2; TforY2 = TforY1; YforT2 = YforT1; TforY1 = t; YforT1 = y; } return t; } public double refine(double a, double b, double c, double target, double t) { if (t < -0.1 || t > 1.1) { return -1; } double y = YforT(t); double t0, t1; if (y < target) { t0 = t; t1 = 1; } else { t0 = 0; t1 = t; } double origt = t; double origy = y; boolean useslope = true; while (y != target) { if (!useslope) { double t2 = (t0 + t1) / 2; if (t2 == t0 || t2 == t1) { break; } t = t2; } else { double slope = dYforT(t, 1); if (slope == 0) { useslope = false; continue; } double t2 = t + ((target - y) / slope); if (t2 == t || t2 <= t0 || t2 >= t1) { useslope = false; continue; } t = t2; } y = YforT(t); if (y < target) { t0 = t; } else if (y > target) { t1 = t; } else { break; } } boolean verbose = false; if (false && t >= 0 && t <= 1) { y = YforT(t); long tdiff = diffbits(t, origt); long ydiff = diffbits(y, origy); long yerr = diffbits(y, target); if (yerr > 0 || (verbose && tdiff > 0)) { System.out.println("target was y = "+target); System.out.println("original was y = "+origy+", t = "+origt); System.out.println("final was y = "+y+", t = "+t); System.out.println("t diff is "+tdiff); System.out.println("y diff is "+ydiff); System.out.println("y error is "+yerr); double tlow = prev(t); double ylow = YforT(tlow); double thi = next(t); double yhi = YforT(thi); if (Math.abs(target - ylow) < Math.abs(target - y) || Math.abs(target - yhi) < Math.abs(target - y)) { System.out.println("adjacent y's = ["+ylow+", "+yhi+"]"); } } } return (t > 1) ? -1 : t; } @Override public double XforY(double y) { if (y <= y0) { return x0; } if (y >= y1) { return x1; } return XforT(TforY(y)); } @Override public double XforT(double t) { return (((xcoeff3 * t) + xcoeff2) * t + xcoeff1) * t + xcoeff0; } @Override public double YforT(double t) { return (((ycoeff3 * t) + ycoeff2) * t + ycoeff1) * t + ycoeff0; } @Override public double dXforT(double t, int deriv) { switch (deriv) { case 0: return (((xcoeff3 * t) + xcoeff2) * t + xcoeff1) * t + xcoeff0; case 1: return ((3 * xcoeff3 * t) + 2 * xcoeff2) * t + xcoeff1; case 2: return (6 * xcoeff3 * t) + 2 * xcoeff2; case 3: return 6 * xcoeff3; default: return 0; } } @Override public double dYforT(double t, int deriv) { switch (deriv) { case 0: return (((ycoeff3 * t) + ycoeff2) * t + ycoeff1) * t + ycoeff0; case 1: return ((3 * ycoeff3 * t) + 2 * ycoeff2) * t + ycoeff1; case 2: return (6 * ycoeff3 * t) + 2 * ycoeff2; case 3: return 6 * ycoeff3; default: return 0; } } @Override public double nextVertical(double t0, double t1) { double eqn[] = {xcoeff1, 2 * xcoeff2, 3 * xcoeff3}; int numroots = solveQuadratic(eqn, eqn); for (int i = 0; i < numroots; i++) { if (eqn[i] > t0 && eqn[i] < t1) { t1 = eqn[i]; } } return t1; } @Override public void enlarge(RectBounds r) { r.add((float) x0, (float) y0); double eqn[] = {xcoeff1, 2 * xcoeff2, 3 * xcoeff3}; int numroots = solveQuadratic(eqn, eqn); for (int i = 0; i < numroots; i++) { double t = eqn[i]; if (t > 0 && t < 1) { r.add((float) XforT(t), (float) YforT(t)); } } r.add((float) x1, (float) y1); } @Override public Curve getSubCurve(double ystart, double yend, int dir) { if (ystart <= y0 && yend >= y1) { return getWithDirection(dir); } double eqn[] = new double[14]; double t0, t1; t0 = TforY(ystart); t1 = TforY(yend); eqn[0] = x0; eqn[1] = y0; eqn[2] = cx0; eqn[3] = cy0; eqn[4] = cx1; eqn[5] = cy1; eqn[6] = x1; eqn[7] = y1; if (t0 > t1) { /* This happens in only rare cases where ystart is * very near yend and solving for the yend root ends * up stepping slightly lower in t than solving for * the ystart root. * Ideally we might want to skip this tiny little * segment and just modify the surrounding coordinates * to bridge the gap left behind, but there is no way * to do that from here. Higher levels could * potentially eliminate these tiny "fixup" segments, * but not without a lot of extra work on the code that * coalesces chains of curves into subpaths. The * simplest solution for now is to just reorder the t * values and chop out a miniscule curve piece. */ double t = t0; t0 = t1; t1 = t; } if (t1 < 1) { split(eqn, 0, t1); } int i; if (t0 <= 0) { i = 0; } else { split(eqn, 0, t0 / t1); i = 6; } return new Order3(eqn[i+0], ystart, eqn[i+2], eqn[i+3], eqn[i+4], eqn[i+5], eqn[i+6], yend, dir); } @Override public Curve getReversedCurve() { return new Order3(x0, y0, cx0, cy0, cx1, cy1, x1, y1, -direction); } @Override public int getSegment(float coords[]) { if (direction == INCREASING) { coords[0] = (float) cx0; coords[1] = (float) cy0; coords[2] = (float) cx1; coords[3] = (float) cy1; coords[4] = (float) x1; coords[5] = (float) y1; } else { coords[0] = (float) cx1; coords[1] = (float) cy1; coords[2] = (float) cx0; coords[3] = (float) cy0; coords[4] = (float) x0; coords[5] = (float) y0; } return PathIterator.SEG_CUBICTO; } @Override public String controlPointString() { return (("("+round(getCX0())+", "+round(getCY0())+"), ")+ ("("+round(getCX1())+", "+round(getCY1())+"), ")); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy