All Downloads are FREE. Search and download functionalities are using the official Maven repository.

javafx.animation.Interpolator Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010, 2024, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package javafx.animation;

import javafx.util.Duration;
import com.sun.javafx.animation.InterpolatorHelper;
import com.sun.scenario.animation.NumberTangentInterpolator;
import com.sun.scenario.animation.SplineInterpolator;
import com.sun.scenario.animation.StepInterpolator;

/**
 * The abstract class defines several {@code interpolate} methods, which are
 * used to calculate interpolated values. Various built-in implementations of
 * this class are offered. Applications may choose to implement their own
 * {@code Interpolator} to get custom interpolation behavior.
 * 

* A custom {@code Interpolator} has to be defined in terms of a " * {@link #curve(double) curve()}". * @since JavaFX 2.0 */ public abstract class Interpolator { private static final double EPSILON = 1e-12; static { InterpolatorHelper.setAccessor(new InterpolatorHelper.Accessor() { @Override public double curve(Interpolator interpolator, double t) { return interpolator.curve(t); } }); } /** * The constructor of {@code Interpolator}. */ protected Interpolator() { } /** * Built-in interpolator that provides discrete time interpolation. The * return value of {@code interpolate()} is {@code endValue} only when the * input {@code fraction} is 1.0, and {@code startValue} otherwise. */ public static final Interpolator DISCRETE = new Interpolator() { @Override protected double curve(double t) { return (Math.abs(t - 1.0) < EPSILON) ? 1.0 : 0.0; } @Override public String toString() { return "Interpolator.DISCRETE"; } }; /** * Built-in interpolator that provides linear time interpolation. The return * value of {@code interpolate()} is {@code startValue} + ({@code endValue} * - {@code startValue}) * {@code fraction}. */ public static final Interpolator LINEAR = new Interpolator() { @Override protected double curve(double t) { return t; } @Override public String toString() { return "Interpolator.LINEAR"; } }; /* * Easing is calculated with the following algorithm (taken from SMIL 3.0 * specs). The result is clamped because of possible rounding errors. * * double runRate = 1.0 / (1.0 - acceleration/2.0 - deceleration/2.0); if * (fraction < acceleration) { double averageRunRate = runRate * (fraction / * acceleration) / 2; fraction *= averageRunRate; } else if (fraction > (1.0 * - deceleration)) { // time spent in deceleration portion double tdec = * fraction - (1.0 - deceleration); // proportion of tdec to total * deceleration time double pdec = tdec / deceleration; fraction = runRate * * (1.0 - ( acceleration / 2) - deceleration + tdec * (2 - pdec) / 2); } * else { fraction = runRate * (fraction - (acceleration / 2)); } */ /** * Built-in interpolator instance that provides ease in/out behavior. *

* An ease-both interpolator will make an animation start slow, then * accelerate and slow down again towards the end, all in a smooth manner. *

* The implementation uses the algorithm for easing defined in SMIL 3.0 * with an acceleration and deceleration factor of 0.2, respectively. */ public static final Interpolator EASE_BOTH = new Interpolator() { @Override protected double curve(double t) { // See the SMIL 3.1 specification for details on this calculation // acceleration = 0.2, deceleration = 0.2 return Interpolator.clamp((t < 0.2) ? 3.125 * t * t : (t > 0.8) ? -3.125 * t * t + 6.25 * t - 2.125 : 1.25 * t - 0.125); } @Override public String toString() { return "Interpolator.EASE_BOTH"; } }; /** * Built-in interpolator instance that provides ease in behavior. *

* An ease-in interpolator will make an animation start slow and then * accelerate smoothly. *

* The implementation uses the algorithm for easing defined in SMIL 3.0 * with an acceleration factor of 0.2. */ public static final Interpolator EASE_IN = new Interpolator() { private static final double S1 = 25.0 / 9.0; private static final double S3 = 10.0 / 9.0; private static final double S4 = 1.0 / 9.0; @Override protected double curve(double t) { // See the SMIL 3.1 specification for details on this calculation // acceleration = 0.2, deceleration = 0.0 return Interpolator.clamp((t < 0.2) ? S1 * t * t : S3 * t - S4); } @Override public String toString() { return "Interpolator.EASE_IN"; } }; /** * Built-in interpolator instance that provides ease out behavior. *

* An ease-out interpolator will make an animation slow down toward the * end smoothly. *

* The implementation uses the algorithm for easing defined in SMIL 3.0 * with an deceleration factor of 0.2. */ public static final Interpolator EASE_OUT = new Interpolator() { private static final double S1 = -25.0 / 9.0; private static final double S2 = 50.0 / 9.0; private static final double S3 = -16.0 / 9.0; private static final double S4 = 10.0 / 9.0; @Override protected double curve(double t) { // See the SMIL 3.1 specification for details on this calculation // acceleration = 0.2, deceleration = 0.0 return Interpolator.clamp((t > 0.8) ? S1 * t * t + S2 * t + S3 : S4 * t); } @Override public String toString() { return "Interpolator.EASE_OUT"; } }; /** * Creates an {@code Interpolator}, which {@link #curve(double) curve()} is * shaped using the spline control points defined by ({@code x1}, {@code y1} * ) and ({@code x2}, {@code y2}). The anchor points of the spline are * implicitly defined as ({@code 0.0}, {@code 0.0}) and ({@code 1.0}, * {@code 1.0}). * * @param x1 * x coordinate of the first control point * @param y1 * y coordinate of the first control point * @param x2 * x coordinate of the second control point * @param y2 * y coordinate of the second control point * @return A spline interpolator */ public static Interpolator SPLINE(double x1, double y1, double x2, double y2) { return new SplineInterpolator(x1, y1, x2, y2); } /** * Create a tangent interpolator. A tangent interpolator allows to define * the behavior of an animation curve very precisely by defining the * tangents close to a key frame. * * A tangent interpolator defines the behavior to the left and to the right * of a key frame, therefore it is only useful within a {@link Timeline}. * If used in a {@link KeyFrame} after a KeyFrame that has different interpolator, * it's treated as if the out-tangent of that KeyFrame was equal to the value in the KeyFrame. * *

* A tangent interpolator
     * defines the behavior to the left and to the right of a key frame,
     * therefore it is only useful within a Timeline * *

* The parameters define the tangent of the animation curve for the in * tangent (before a key frame) and out tangent (after a key frame). Each * tangent is specified with a pair, the distance to the key frame and the * value of the tangent at this moment. *

* The interpolation then follows a bezier curve, with 2 control points defined by the specified tangent and * positioned at 1/3 of the duration before the second KeyFrame or after the first KeyFrame. See the picture above. * * @param t1 * The delta time of the in-tangent, relative to the KeyFrame * @param v1 * The value of the in-tangent * @param t2 * The delta time of the out-tangent, relative to the KeyFrame * @param v2 * The value of the out-tangent * @return the new tangent interpolator */ public static Interpolator TANGENT(Duration t1, double v1, Duration t2, double v2) { return new NumberTangentInterpolator(t1, v1, t2, v2); } /** * Creates a tangent interpolator, for which in-tangent and out-tangent are * identical. This is especially useful for the first and the last key frame * of a {@link Timeline}, because for these key frames only one tangent is * used. * * @see #TANGENT(Duration, double, Duration, double) * * @param t * The delta time of the tangent * @param v * The value of the tangent * @return the new Tangent interpolator */ public static Interpolator TANGENT(Duration t, double v) { return new NumberTangentInterpolator(t, v); } /** * Specifies the step position of a step interpolator. *

* The step position determines the location of rise points in the input progress interval, which are the * locations on the input progress axis where the output progress value jumps from one step to the next. * * @since 23 */ public enum StepPosition { /** * The interval starts with a rise point when the input progress value is 0. *

* START */ START, /** * The interval ends with a rise point when the input progress value is 1. *

* END */ END, /** * The interval starts with a rise point when the input progress value is 0, * and ends with a rise point when the input progress value is 1. *

* BOTH */ BOTH, /** * All rise points are within the open interval (0..1). *

* NONE */ NONE } /** * Built-in interpolator instance that is equivalent to {@code STEPS(1, StepPosition.START)}. * * @since 23 */ public static final Interpolator STEP_START = STEPS(1, StepPosition.START); /** * Built-in interpolator instance that is equivalent to {@code STEPS(1, StepPosition.END)}. * * @since 23 */ public static final Interpolator STEP_END = STEPS(1, StepPosition.END); /** * Creates a step interpolator that divides the input time into a series of intervals, each * interval being equal in length, where each interval maps to a constant output time value. * The output time value is determined by the {@link StepPosition}. * * @param intervalCount the number of intervals in the step interpolator * @param position the {@code StepPosition} of the step interpolator * @throws IllegalArgumentException if {@code intervals} is less than 1, or if {@code intervals} is * less than 2 when {@code position} is {@link StepPosition#NONE} * @throws NullPointerException if {@code position} is {@code null} * @return a new step interpolator * * @since 23 */ public static Interpolator STEPS(int intervalCount, StepPosition position) { return new StepInterpolator(intervalCount, position); } /** * This method takes two {@code Objects} along with a {@code fraction} * between {@code 0.0} and {@code 1.0} and returns the interpolated value. *

* If both {@code Objects} implement {@code Number}, their values are * interpolated. If {@code startValue} implements {@link Interpolatable} the * calculation defined in {@link Interpolatable#interpolate(Object, double) * interpolate()} is used. If neither of these conditions are met, a * discrete interpolation is used, i.e. {@code endValue} is returned if and * only if {@code fraction} is {@code 1.0}, otherwise {@code startValue} is * returned. *

* Before calculating the interpolated value, the fraction is altered * according to the function defined in {@link #curve(double) curve()}. * * @param startValue * start value * @param endValue * end value * @param fraction * a value between 0.0 and 1.0 * @return interpolated value */ @SuppressWarnings({ "unchecked", "rawtypes" }) public Object interpolate(Object startValue, Object endValue, double fraction) { if ((startValue instanceof Number) && (endValue instanceof Number)) { final double start = ((Number) startValue).doubleValue(); final double end = ((Number) endValue).doubleValue(); final double val = start + (end - start) * curve(fraction); if ((startValue instanceof Double) || (endValue instanceof Double)) { return Double.valueOf(val); } if ((startValue instanceof Float) || (endValue instanceof Float)) { return Float.valueOf((float) val); } if ((startValue instanceof Long) || (endValue instanceof Long)) { return Long.valueOf(Math.round(val)); } return Integer.valueOf((int) Math.round(val)); } else if ((startValue instanceof Interpolatable) && (endValue instanceof Interpolatable)) { return ((Interpolatable) startValue).interpolate(endValue, curve(fraction)); } else { // discrete return (curve(fraction) == 1.0) ? endValue : startValue; } } /** * This method takes two {@code boolean} values along with a * {@code fraction} between {@code 0.0} and {@code 1.0} and returns the * interpolated value. *

* Before calculating the interpolated value, the fraction is altered * according to the function defined in {@link #curve(double) curve()}. * * @param startValue * the first data point * @param endValue * the second data point * @param fraction * the fraction in {@code [0.0...1.0]} * @return the interpolated value */ public boolean interpolate(boolean startValue, boolean endValue, double fraction) { return (Math.abs(curve(fraction) - 1.0) < EPSILON) ? endValue : startValue; } /** * This method takes two {@code double} values along with a {@code fraction} * between {@code 0.0} and {@code 1.0} and returns the interpolated value. *

* Before calculating the interpolated value, the fraction is altered * according to the function defined in {@link #curve(double) curve()}. * * @param startValue * the first data point * @param endValue * the second data point * @param fraction * the fraction in {@code [0.0...1.0]} * @return the interpolated value */ public double interpolate(double startValue, double endValue, double fraction) { return startValue + (endValue - startValue) * curve(fraction); } /** * This method takes two {@code int} values along with a {@code fraction} * between {@code 0.0} and {@code 1.0} and returns the interpolated value. *

* Before calculating the interpolated value, the fraction is altered * according to the function defined in {@link #curve(double) curve()}. * * @param startValue * the first data point * @param endValue * the second data point * @param fraction * the fraction in {@code [0.0...1.0]} * @return the interpolated value */ public int interpolate(int startValue, int endValue, double fraction) { return startValue + (int) Math.round((endValue - startValue) * curve(fraction)); } /** * This method takes two {@code int} values along with a {@code fraction} * between {@code 0.0} and {@code 1.0} and returns the interpolated value. *

* Before calculating the interpolated value, the fraction is altered * according to the function defined in {@link #curve(double) curve()}. * * @param startValue * the first data point * @param endValue * the second data point * @param fraction * the fraction in {@code [0.0...1.0]} * @return the interpolated value */ public long interpolate(long startValue, long endValue, double fraction) { return startValue + Math.round((endValue - startValue) * curve(fraction)); } private static double clamp(double t) { return (t < 0.0) ? 0.0 : (t > 1.0) ? 1.0 : t; } /** * Mapping from [0.0..1.0] to itself. * * @param t * time, but normalized to the range [0.0..1.0], where 0.0 is the * start of the current interval, while 1.0 is the end of the * current interval. Usually a function that increases * monotonically. * @return the curved value */ protected abstract double curve(double t); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy