All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openjsse.sun.security.provider.SHA3 Maven / Gradle / Ivy

There is a newer version: 1.1.14
Show newest version
/*
 * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package org.openjsse.sun.security.provider;

import static org.openjsse.sun.security.provider.ByteArrayAccess.*;
import java.nio.*;
import java.util.*;
import java.security.*;

/**
 * This class implements the Secure Hash Algorithm SHA-3 developed by
 * the National Institute of Standards and Technology along with the
 * National Security Agency as defined in FIPS PUB 202.
 *
 * 

It implements java.security.MessageDigestSpi, and can be used * through Java Cryptography Architecture (JCA), as a pluggable * MessageDigest implementation. * * @since 9 * @author Valerie Peng */ abstract class SHA3 extends DigestBase { private static final int WIDTH = 200; // in bytes, e.g. 1600 bits private static final int DM = 5; // dimension of lanes private static final int NR = 24; // number of rounds // precomputed round constants needed by the step mapping Iota private static final long[] RC_CONSTANTS = { 0x01L, 0x8082L, 0x800000000000808aL, 0x8000000080008000L, 0x808bL, 0x80000001L, 0x8000000080008081L, 0x8000000000008009L, 0x8aL, 0x88L, 0x80008009L, 0x8000000aL, 0x8000808bL, 0x800000000000008bL, 0x8000000000008089L, 0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L, 0x800aL, 0x800000008000000aL, 0x8000000080008081L, 0x8000000000008080L, 0x80000001L, 0x8000000080008008L, }; private byte[] state = new byte[WIDTH]; private long[] lanes = new long[DM*DM]; /** * Creates a new SHA-3 object. */ SHA3(String name, int digestLength) { super(name, digestLength, (WIDTH - (2 * digestLength))); } /** * Core compression function. Processes blockSize bytes at a time * and updates the state of this object. */ void implCompress(byte[] b, int ofs) { for (int i = 0; i < buffer.length; i++) { state[i] ^= b[ofs++]; } keccak(); } /** * Return the digest. Subclasses do not need to reset() themselves, * DigestBase calls implReset() when necessary. */ void implDigest(byte[] out, int ofs) { int numOfPadding = setPaddingBytes(buffer, (int)(bytesProcessed % buffer.length)); if (numOfPadding < 1) { throw new ProviderException("Incorrect pad size: " + numOfPadding); } for (int i = 0; i < buffer.length; i++) { state[i] ^= buffer[i]; } keccak(); System.arraycopy(state, 0, out, ofs, engineGetDigestLength()); } /** * Resets the internal state to start a new hash. */ void implReset() { Arrays.fill(state, (byte)0); Arrays.fill(lanes, 0L); } /** * Utility function for padding the specified data based on the * pad10*1 algorithm (section 5.1) and the 2-bit suffix "01" required * for SHA-3 hash (section 6.1). */ private static int setPaddingBytes(byte[] in, int len) { if (len != in.length) { // erase leftover values Arrays.fill(in, len, in.length, (byte)0); // directly store the padding bytes into the input // as the specified buffer is allocated w/ size = rateR in[len] |= (byte) 0x06; in[in.length - 1] |= (byte) 0x80; } return (in.length - len); } /** * Utility function for transforming the specified byte array 's' * into array of lanes 'm' as defined in section 3.1.2. */ private static void bytes2Lanes(byte[] s, long[] m) { int sOfs = 0; // Conversion traverses along x-axis before y-axis for (int y = 0; y < DM; y++, sOfs += 40) { b2lLittle(s, sOfs, m, DM*y, 40); } } /** * Utility function for transforming the specified array of * lanes 'm' into a byte array 's' as defined in section 3.1.3. */ private static void lanes2Bytes(long[] m, byte[] s) { int sOfs = 0; // Conversion traverses along x-axis before y-axis for (int y = 0; y < DM; y++, sOfs += 40) { l2bLittle(m, DM*y, s, sOfs, 40); } } /** * Step mapping Theta as defined in section 3.2.1 . */ private static long[] smTheta(long[] a) { long c0 = a[0]^a[5]^a[10]^a[15]^a[20]; long c1 = a[1]^a[6]^a[11]^a[16]^a[21]; long c2 = a[2]^a[7]^a[12]^a[17]^a[22]; long c3 = a[3]^a[8]^a[13]^a[18]^a[23]; long c4 = a[4]^a[9]^a[14]^a[19]^a[24]; long d0 = c4 ^ Long.rotateLeft(c1, 1); long d1 = c0 ^ Long.rotateLeft(c2, 1); long d2 = c1 ^ Long.rotateLeft(c3, 1); long d3 = c2 ^ Long.rotateLeft(c4, 1); long d4 = c3 ^ Long.rotateLeft(c0, 1); for (int y = 0; y < a.length; y += DM) { a[y] ^= d0; a[y+1] ^= d1; a[y+2] ^= d2; a[y+3] ^= d3; a[y+4] ^= d4; } return a; } /** * Merged Step mapping Rho (section 3.2.2) and Pi (section 3.2.3). * for performance. Optimization is achieved by precalculating * shift constants for the following loop * int xNext, yNext; * for (int t = 0, x = 1, y = 0; t <= 23; t++, x = xNext, y = yNext) { * int numberOfShift = ((t + 1)*(t + 2)/2) % 64; * a[y][x] = Long.rotateLeft(a[y][x], numberOfShift); * xNext = y; * yNext = (2 * x + 3 * y) % DM; * } * and with inplace permutation. */ private static long[] smPiRho(long[] a) { long tmp = Long.rotateLeft(a[10], 3); a[10] = Long.rotateLeft(a[1], 1); a[1] = Long.rotateLeft(a[6], 44); a[6] = Long.rotateLeft(a[9], 20); a[9] = Long.rotateLeft(a[22], 61); a[22] = Long.rotateLeft(a[14], 39); a[14] = Long.rotateLeft(a[20], 18); a[20] = Long.rotateLeft(a[2], 62); a[2] = Long.rotateLeft(a[12], 43); a[12] = Long.rotateLeft(a[13], 25); a[13] = Long.rotateLeft(a[19], 8); a[19] = Long.rotateLeft(a[23], 56); a[23] = Long.rotateLeft(a[15], 41); a[15] = Long.rotateLeft(a[4], 27); a[4] = Long.rotateLeft(a[24], 14); a[24] = Long.rotateLeft(a[21], 2); a[21] = Long.rotateLeft(a[8], 55); a[8] = Long.rotateLeft(a[16], 45); a[16] = Long.rotateLeft(a[5], 36); a[5] = Long.rotateLeft(a[3], 28); a[3] = Long.rotateLeft(a[18], 21); a[18] = Long.rotateLeft(a[17], 15); a[17] = Long.rotateLeft(a[11], 10); a[11] = Long.rotateLeft(a[7], 6); a[7] = tmp; return a; } /** * Step mapping Chi as defined in section 3.2.4. */ private static long[] smChi(long[] a) { for (int y = 0; y < a.length; y+=DM) { long ay0 = a[y]; long ay1 = a[y+1]; long ay2 = a[y+2]; long ay3 = a[y+3]; long ay4 = a[y+4]; a[y] = ay0 ^ ((~ay1) & ay2); a[y+1] = ay1 ^ ((~ay2) & ay3); a[y+2] = ay2 ^ ((~ay3) & ay4); a[y+3] = ay3 ^ ((~ay4) & ay0); a[y+4] = ay4 ^ ((~ay0) & ay1); } return a; } /** * Step mapping Iota as defined in section 3.2.5. */ private static long[] smIota(long[] a, int rndIndex) { a[0] ^= RC_CONSTANTS[rndIndex]; return a; } /** * The function Keccak as defined in section 5.2 with * rate r = 1600 and capacity c = (digest length x 2). */ private void keccak() { // convert the 200-byte state into 25 lanes bytes2Lanes(state, lanes); // process the lanes through step mappings for (int ir = 0; ir < NR; ir++) { smIota(smChi(smPiRho(smTheta(lanes))), ir); } // convert the resulting 25 lanes back into 200-byte state lanes2Bytes(lanes, state); } public Object clone() throws CloneNotSupportedException { SHA3 copy = (SHA3) super.clone(); copy.state = copy.state.clone(); copy.lanes = new long[DM*DM]; return copy; } /** * SHA3-224 implementation class. */ public static final class SHA224 extends SHA3 { public SHA224() { super("SHA3-224", 28); } } /** * SHA3-256 implementation class. */ public static final class SHA256 extends SHA3 { public SHA256() { super("SHA3-256", 32); } } /** * SHAs-384 implementation class. */ public static final class SHA384 extends SHA3 { public SHA384() { super("SHA3-384", 48); } } /** * SHA3-512 implementation class. */ public static final class SHA512 extends SHA3 { public SHA512() { super("SHA3-512", 64); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy