All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.map.PrimeFinder Maven / Gradle / Ivy

Go to download

The OpenLR data package comprises interfaces for OpenLR location references and also interfaces for encoding and decoding the internal data into a defined physical format and the other way round.

The newest version!
package cern.colt.map;

/**
 * Not of interest for users; only for implementors of hashtables.
 * Used to keep hash table capacities prime numbers.
 *
 * 

Choosing prime numbers as hash table capacities is a good idea to keep them working fast, * particularly under hash table expansions. * *

However, JDK 1.2, JGL 3.1 and many other toolkits do nothing to keep capacities prime. * This class provides efficient means to choose prime capacities. * *

Choosing a prime is O(log 300) (binary search in a list of 300 int's). * Memory requirements: 1 KB static memory. * * @author [email protected] * @version 1.0, 09/24/99 */ public class PrimeFinder extends Object { /** * The largest prime this class can generate; currently equal to Integer.MAX_VALUE. */ public static final int largestPrime = Integer.MAX_VALUE; //yes, it is prime. /** * The prime number list consists of 11 chunks. * Each chunk contains prime numbers. * A chunk starts with a prime P1. The next element is a prime P2. P2 is the smallest prime for which holds: P2 >= 2*P1. * The next element is P3, for which the same holds with respect to P2, and so on. *

* Chunks are chosen such that for any desired capacity >= 1000 * the list includes a prime number <= desired capacity * 1.11 (11%). * For any desired capacity >= 200 * the list includes a prime number <= desired capacity * 1.16 (16%). * For any desired capacity >= 16 * the list includes a prime number <= desired capacity * 1.21 (21%). *

* Therefore, primes can be retrieved which are quite close to any desired capacity, * which in turn avoids wasting memory. * For example, the list includes 1039,1117,1201,1277,1361,1439,1523,1597,1759,1907,2081. * So if you need a prime >= 1040, you will find a prime <= 1040*1.11=1154. *

* Chunks are chosen such that they are optimized for a hashtable growthfactor of 2.0; * If your hashtable has such a growthfactor then, * after initially "rounding to a prime" upon hashtable construction, * it will later expand to prime capacities such that there exist no better primes. *

* In total these are about 32*10=320 numbers -> 1 KB of static memory needed. * If you are stingy, then delete every second or fourth chunk. */ private static final int[] primeCapacities = { //chunk #0 largestPrime, //chunk #1 5, 11, 23, 47, 97, 197, 397, 797, 1597, 3203, 6421, 12853, 25717, 51437, 102877, 205759, 411527, 823117, 1646237, 3292489, 6584983, 13169977, 26339969, 52679969, 105359939, 210719881, 421439783, 842879579, 1685759167, //chunk #2 433, 877, 1759, 3527, 7057, 14143, 28289, 56591, 113189, 226379, 452759, 905551, 1811107, 3622219, 7244441, 14488931, 28977863, 57955739, 115911563, 231823147, 463646329, 927292699, 1854585413, //chunk #3 953, 1907, 3821, 7643, 15287, 30577, 61169, 122347, 244703, 489407, 978821, 1957651, 3915341, 7830701, 15661423, 31322867, 62645741, 125291483, 250582987, 501165979, 1002331963, 2004663929, //chunk #4 1039, 2081, 4177, 8363, 16729, 33461, 66923, 133853, 267713, 535481, 1070981, 2141977, 4283963, 8567929, 17135863, 34271747, 68543509, 137087021, 274174111, 548348231, 1096696463, //chunk #5 31, 67, 137, 277, 557, 1117, 2237, 4481, 8963, 17929, 35863, 71741, 143483, 286973, 573953, 1147921, 2295859, 4591721, 9183457, 18366923, 36733847, 73467739, 146935499, 293871013, 587742049, 1175484103, //chunk #6 599, 1201, 2411, 4831, 9677, 19373, 38747, 77509, 155027, 310081, 620171, 1240361, 2480729, 4961459, 9922933, 19845871, 39691759, 79383533, 158767069, 317534141, 635068283, 1270136683, //chunk #7 311, 631, 1277, 2557, 5119, 10243, 20507, 41017, 82037, 164089, 328213, 656429, 1312867, 2625761, 5251529, 10503061, 21006137, 42012281, 84024581, 168049163, 336098327, 672196673, 1344393353, //chunk #8 3, 7, 17, 37, 79, 163, 331, 673, 1361, 2729, 5471, 10949, 21911, 43853, 87719, 175447, 350899, 701819, 1403641, 2807303, 5614657, 11229331, 22458671, 44917381, 89834777, 179669557, 359339171, 718678369, 1437356741, //chunk #9 43, 89, 179, 359, 719, 1439, 2879, 5779, 11579, 23159, 46327, 92657, 185323, 370661, 741337, 1482707, 2965421, 5930887, 11861791, 23723597, 47447201, 94894427, 189788857, 379577741, 759155483, 1518310967, //chunk #10 379, 761, 1523, 3049, 6101, 12203, 24407, 48817, 97649, 195311, 390647, 781301, 1562611, 3125257, 6250537, 12501169, 25002389, 50004791, 100009607, 200019221, 400038451, 800076929, 1600153859 /* // some more chunks for the low range [3..1000] //chunk #11 13,29,59,127,257,521,1049,2099,4201,8419,16843,33703,67409,134837,269683, 539389,1078787,2157587,4315183,8630387,17260781,34521589,69043189,138086407, 276172823,552345671,1104691373, //chunk #12 19,41,83,167,337,677, //1361,2729,5471,10949,21911,43853,87719,175447,350899, //701819,1403641,2807303,5614657,11229331,22458671,44917381,89834777,179669557, //359339171,718678369,1437356741, //chunk #13 53,107,223,449,907,1823,3659,7321,14653,29311,58631,117269, 234539,469099,938207,1876417,3752839,7505681,15011389,30022781, 60045577,120091177,240182359,480364727,960729461,1921458943 */ }; static { //initializer // The above prime numbers are formatted for human readability. // To find numbers fast, we sort them once and for all. java.util.Arrays.sort(primeCapacities); //new cern.colt.list.IntArrayList(primeCapacities).mergeSort(); // for debug only, TODO } /** * Makes this class non instantiable, but still let's others inherit from it. */ protected PrimeFinder() { } /** * Tests correctness. Try * from=1000, to=10000 * from=200, to=1000 * from=16, to=1000 * from=1000, to=Integer.MAX_VALUE */ protected static void main(String args[]) { int from = Integer.parseInt(args[0]); int to = Integer.parseInt(args[1]); statistics(from, to); } /** * Returns a prime number which is >= desiredCapacity and very close to desiredCapacity (within 11% if desiredCapacity >= 1000). * * @param desiredCapacity the capacity desired by the user. * @return the capacity which should be used for a hashtable. */ public static int nextPrime(int desiredCapacity) { int i = java.util.Arrays.binarySearch(primeCapacities, desiredCapacity); //int i = new cern.colt.list.IntArrayList(primeCapacities).binarySearch(desiredCapacity); // for debug only TODO if (i < 0) { // desired capacity not found, choose next prime greater than desired capacity i = -i - 1; // remember the semantics of binarySearch... } return primeCapacities[i]; } /** * Tests correctness. */ protected static void statistics(int from, int to) { // check that primes contain no accidental errors for (int i = 0; i < primeCapacities.length - 1; i++) { if (primeCapacities[i] >= primeCapacities[i + 1]) throw new RuntimeException("primes are unsorted or contain duplicates; detected at " + i + "@" + primeCapacities[i]); } double accDeviation = 0.0; double maxDeviation = -1.0; for (int i = from; i <= to; i++) { int primeCapacity = nextPrime(i); //System.out.println(primeCapacity); double deviation = (primeCapacity - i) / (double) i; if (deviation > maxDeviation) { maxDeviation = deviation; System.out.println("new maxdev @" + i + "@dev=" + maxDeviation); } accDeviation += deviation; } long width = 1 + (long) to - (long) from; double meanDeviation = accDeviation / width; System.out.println("Statistics for [" + from + "," + to + "] are as follows"); System.out.println("meanDeviation = " + (float) meanDeviation * 100 + " %"); System.out.println("maxDeviation = " + (float) maxDeviation * 100 + " %"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy