mgo.evolution.algorithm.NSGA3.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright (C) 01/07/2020 Juste Raimbault
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package mgo.evolution.algorithm
import cats.implicits._
import mgo.evolution._
import mgo.evolution.algorithm.GenomeVectorDouble._
import mgo.evolution.breeding._
import mgo.evolution.elitism._
import mgo.tools.execution._
import org.apache.commons.math3.linear.{ LUDecomposition, MatrixUtils, RealMatrix }
import org.apache.commons.math3.util.{ ArithmeticUtils, CombinatoricsUtils }
import monocle._
import monocle.syntax.all._
import scala.collection.mutable.ArrayBuffer
import scala.language.higherKinds
import scala.util.Random
/**
* NSGA-III algorithm for many-objective problems
*
* Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE transactions on evolutionary computation, 18(4), 577-601.
*
* For U-NSGA-III, see
* Seada, H., & Deb, K. (2015, March). U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. In International conference on evolutionary multi-criterion optimization (pp. 34-49). Springer, Cham.
*
*/
object NSGA3 {
import CDGenome._
import DeterministicIndividual._
type NSGA3State = EvolutionState[Unit]
def initialGenomes(populationSize: Int, continuous: Vector[C], discrete: Vector[D], reject: Option[Genome => Boolean], rng: scala.util.Random): Vector[Genome] =
CDGenome.initialGenomes(populationSize, continuous, discrete, reject, rng)
def adaptiveBreeding[S, P](operatorExploration: Double, discrete: Vector[D], fitness: P => Vector[Double], reject: Option[Genome => Boolean], lambda: Int = -1): Breeding[S, Individual[P], Genome] =
NSGA3Operations.adaptiveBreeding[S, Individual[P], Genome](
individualFitness[P](fitness),
Focus[Individual[P]](_.genome).get,
continuousValues.get,
continuousOperator.get,
discreteValues.get,
discreteOperator.get,
discrete,
buildGenome,
reject,
operatorExploration,
lambda)
def expression[P](express: (Vector[Double], Vector[Int]) => P, components: Vector[C]): Genome => Individual[P] =
DeterministicIndividual.expression(express, components)
def elitism[S, P](mu: Int, references: NSGA3Operations.ReferencePoints, components: Vector[C], fitness: P => Vector[Double]): Elitism[S, Individual[P]] =
NSGA3Operations.elitism[S, Individual[P]](
individualFitness[P](fitness),
i => values(i.focus(_.genome).get, components),
references,
mu)
case class Result[P](continuous: Vector[Double], discrete: Vector[Int], fitness: Vector[Double], individual: Individual[P])
def result[P](population: Vector[Individual[P]], continuous: Vector[C], fitness: P => Vector[Double], keepAll: Boolean): Vector[Result[P]] = {
val individuals = if (keepAll) population else keepFirstFront(population, individualFitness(fitness))
individuals.map { i =>
Result(scaleContinuousValues(continuousValues.get(i.genome), continuous), i.focus(_.genome) andThen discreteValues get, individualFitness(fitness)(i), i)
}
}
def result(nsga3: NSGA3, population: Vector[Individual[Vector[Double]]]): Vector[Result[Vector[Double]]] = result[Vector[Double]](population, nsga3.continuous, identity[Vector[Double]] _, keepAll = false)
def reject(f: Option[(Vector[Double], Vector[Int]) => Boolean], continuous: Vector[C]): Option[Genome => Boolean] =
f.map { reject => (g: Genome) =>
val scaledContinuous = scaleContinuousValues(continuousValues.get(g), continuous)
val discreteValue = discreteValues get g
reject(scaledContinuous, discreteValue)
}
def reject(nsga3: NSGA3): Option[Genome => Boolean] = reject(nsga3.reject, nsga3.continuous)
implicit def isAlgorithm: Algorithm[NSGA3, Individual[Vector[Double]], Genome, EvolutionState[Unit]] =
new Algorithm[NSGA3, Individual[Vector[Double]], Genome, NSGA3State] {
override def initialState(t: NSGA3, rng: scala.util.Random): NSGA3State = EvolutionState(s = ())
override def initialPopulation(t: NSGA3, rng: scala.util.Random): Vector[Individual[Vector[Double]]] =
deterministic.initialPopulation[Genome, Individual[Vector[Double]]](
NSGA3.initialGenomes(t.popSize, t.continuous, t.discrete, reject(t), rng),
NSGA3.expression(t.fitness, t.continuous))
override def step(t: NSGA3): (NSGA3State, Vector[Individual[Vector[Double]]], Random) => (NSGA3State, Vector[Individual[Vector[Double]]]) =
(s, population, rng) =>
deterministic.step[NSGA3State, Individual[Vector[Double]], Genome](
NSGA3.adaptiveBreeding[NSGA3State, Vector[Double]](t.operatorExploration, t.discrete, identity, reject(t)),
NSGA3.expression(t.fitness, t.continuous),
NSGA3.elitism[NSGA3State, Vector[Double]](t.popSize, t.referencePoints, t.continuous, identity),
Focus[EvolutionState[Unit]](_.generation),
Focus[EvolutionState[Unit]](_.evaluated))(s, population, rng)
}
}
case class NSGA3(
popSize: Int,
referencePoints: NSGA3Operations.ReferencePoints,
fitness: (Vector[Double], Vector[Int]) => Vector[Double],
continuous: Vector[C],
discrete: Vector[D] = Vector.empty,
operatorExploration: Double = 0.1,
reject: Option[(Vector[Double], Vector[Int]) => Boolean] = None)
object NSGA3Operations {
def numberOfReferencePoints(divisions: Int, dimension: Int): Int = CombinatoricsUtils.binomialCoefficient(dimension + divisions - 1, divisions).toInt
/**
* reference points may either automatically computed given a fixed number, or provided by the user
* -> computation if needed done once and for all at initialization
*/
case class ReferencePoints(references: Vector[Vector[Double]], normalized: Boolean = false)
object ReferencePoints {
def apply(divisions: Int, dimension: Int): ReferencePoints = ReferencePoints(simplexRefPoints(divisions, dimension))
}
/**
* Field of fractions
* -> used for tricking comparison of vectors and have exact discrete points
* @param n numerator
* @param d denominator
* @param reduced reduced with gcd?
*/
case class Fraction(n: Int, d: Int, reduced: Boolean) {
def +(f: Fraction): Fraction = Fraction(n * f.d + d * f.n, d * f.d)
def -(f: Fraction): Fraction = Fraction(n * f.d - d * f.n, d * f.d)
def *(f: Fraction): Fraction = Fraction(n * f.n, d * f.d)
def /(f: Fraction): Fraction = Fraction(n * f.d, d * f.n)
def *(p: Point): Point = Point(p.point.map { _ * this })
def toDouble: Double = n.toDouble / d.toDouble
def isPositive: Boolean = (n >= 0 && d >= 0) || (n <= 0 && d <= 0)
}
object Fraction {
val zero: Fraction = Fraction(0, 1)
val one: Fraction = Fraction(1, 1)
def apply(x: Int): Fraction = Fraction(x, 1)
def apply(n: Int, d: Int): Fraction = {
// sign always at numerator the way fractions are constructed ?
val gcd = ArithmeticUtils.gcd(n, d)
Fraction(n / gcd, d / gcd, reduced = true)
}
}
/**
* Fractional points
* @param point coordinates
*/
case class Point(point: Vector[Fraction]) {
def +(p: Point): Point = Point(point.zip(p.point).map { case (f1, f2) => f1 + f2 })
def -(p: Point): Point = Point(point.zip(p.point).map { case (f1, f2) => f1 - f2 })
def toDoubleVector: Vector[Double] = point.map(_.toDouble)
def embedded(i: Int): Point = Point((0 until i by 1).map { i => point(i) }.toVector ++ Vector(Fraction.zero) ++ (i until point.size by 1).map { i => point(i) }.toVector)
//def isPositive: Boolean = point.map{case Fraction(n,_,_) => n>0}.reduce(_&_)
def isPositive: Boolean = point.map { _.isPositive }.reduce(_ && _)
def isOnSimplex: Boolean = (point.reduce(_ + _) == Fraction.one) && isPositive // not the full simplex
}
/**
* unit simplex points
* q: include generators? (n-1 generator vectors of dim n)
* @param dimension dimension
* @param divisions divisions on each dimension
* @param points discrete point in the simplex
*/
case class DiscreteUnitSimplex(
dimension: Int,
divisions: Int,
points: Vector[Point]) {
def embeddedPoints(i: Int): Vector[Point] = points.map(_.embedded(i))
}
object DiscreteUnitSimplex {
/**
* basic case : two dimensional simplex
* @param divisions divisions
* @return
*/
def twoDimSimplex(divisions: Int): DiscreteUnitSimplex = {
val coords = (0 to divisions by 1).map { Fraction(_, divisions) }
val points = coords.zip(coords.reverse).map { case (f1, f2) => Point(Vector(f1, f2)) }.toVector
DiscreteUnitSimplex(2, divisions, points)
}
/**
* recursive constructor
* two complementary hypersimplices are sufficient to generate the simplex in the next dimension
* (brutal algorithm by filtering points - still a polynomial upper bound)
*
* @param dimension dimension
* @param divisions number of divisions
* @return
*/
def apply(dimension: Int, divisions: Int): DiscreteUnitSimplex = {
dimension match {
case 1 => DiscreteUnitSimplex(1, divisions, (0 to divisions by 1).map { k => Point(Vector(Fraction(k, divisions))) }.toVector)
case 2 => twoDimSimplex(divisions)
case _ =>
val prevSimplex = DiscreteUnitSimplex(dimension - 1, divisions)
val emb0 = prevSimplex.embeddedPoints(0)
val emb1 = prevSimplex.embeddedPoints(1)
val origin = emb0(0)
val points = (for {
vi <- emb0.map(_ - origin)
vj <- emb1.map(_ - origin)
} yield origin + vi + vj).filter(_.isOnSimplex).distinct
DiscreteUnitSimplex(dimension, divisions, points)
}
}
}
/**
* Compute automatic reference points on the simplex
* (called at initialization)
* @param divisions number of segments on each simplex bord line
* @param dimension dimension of the space
* @return
*/
def simplexRefPoints(divisions: Int, dimension: Int): Vector[Vector[Double]] =
DiscreteUnitSimplex(dimension, divisions).points.map { _.toDoubleVector }
/**
* NSGA3 breeding: next provisory population is of size 2*mu
* filtering is done in elitism using reference points
*
* @param fitness fitness
* @param genome genome
* @param continuousValues continuous genome values function
* @param continuousOperator continuousOperator
* @param discreteValues discrete values
* @param discreteOperator discreteOperator
* @param discrete discrete
* @param buildGenome buildGenome
* @param tournamentRounds tournamentRounds
* @param reject reject
* @param operatorExploration operatorExploration
* @param lambda breeded population size - in NSGA3, set at 2*population size - by default when lambda = -1
* @tparam S state
* @tparam I individual
* @tparam G genome
* @return
*/
def adaptiveBreeding[S, I, G](
fitness: I => Vector[Double],
genome: I => G,
continuousValues: G => Vector[Double],
continuousOperator: G => Option[Int],
discreteValues: G => Vector[Int],
discreteOperator: G => Option[Int],
discrete: Vector[D],
buildGenome: (Vector[Double], Option[Int], Vector[Int], Option[Int]) => G,
reject: Option[G => Boolean],
operatorExploration: Double,
lambda: Int = -1): Breeding[S, I, G] = (s, population, rng) => {
val continuousOperatorStatistics = operatorProportions(genome andThen continuousOperator, population)
val discreteOperatorStatistics = operatorProportions(genome andThen discreteOperator, population)
def breedTwo: Breeding[S, I, G] = applyDynamicOperators[S, I, G](
randomSelection[S, I],
genome andThen continuousValues,
genome andThen discreteValues,
continuousOperatorStatistics,
discreteOperatorStatistics,
discrete,
operatorExploration,
buildGenome)
val breededsize = if (lambda == -1) 2 * population.size else lambda
breed(breedTwo, breededsize, reject)(s, population, rng)
}
/**
* The particularity of nsga3 is at the elistism step
* - keep successive pareto fronts until having a population larger than the pop expected
* - remove the last front added
* - fill the remaining points with the reference points heuristic
*
* Note: through normalization, ref points must be recomputed each time, even with user-defined points
* (option : number of points, taken within the objective simplex (tricky to compute ?) ; or user-defined)
*
* @param fitness fitness
* @param values values
* @param references reference points
* @param mu population size
* @tparam S state
* @tparam I individual
* @return
*/
def elitism[S, I](
fitness: I => Vector[Double],
values: I => (Vector[Double], Vector[Int]),
references: ReferencePoints,
mu: Int): Elitism[S, I] =
(s, population, candidates, rng) =>
(s, eliteWithReference[S, I](filterNaN(keepFirst(values)(population, candidates), fitness), fitness, references, mu)(rng))
/**
* Exact successive fronts computation
*
* @param population population
* @param fitness fitness
* @tparam I individual
* @return Vector of fronts, coded by (individuals: Vector[I],fitnesses in same order: Vector(Vector(Double)),indices in initial population: Vector[Int])
*/
def successiveFronts[I](population: Vector[I], fitness: I => Vector[Double]): Vector[(Vector[I], Vector[Vector[Double]], Vector[Int])] = {
if (population.isEmpty) return Vector.empty[(Vector[I], Vector[Vector[Double]], Vector[Int])]
// evaluate all fitness and put in map so that function are not reevaluated at each front computation
val fitnesses = population.map(i => fitness(i))
val fitnessmap = population.zip(fitnesses).toMap
def compfitness: I => Vector[Double] = i => fitnessmap(i)
def extractNextFront(state: (Vector[I], Vector[(I, Int)], Int)): (Vector[I], Vector[(I, Int)], Int) = {
val (currentPop, frontnums, currentFrontNum) = state
val currentFront = keepFirstFront(currentPop, compfitness)
(currentPop.filter(i => !currentFront.contains(i)), frontnums ++ currentFront.map(i => (i, currentFrontNum)), currentFrontNum + 1)
}
val frontnums = Iterator.iterate[(Vector[I], Vector[(I, Int)], Int)]((population, Vector.empty, 0))(extractNextFront).
takeWhile(_._1.nonEmpty).toSeq.last._2
frontnums.
toMap.
zip(fitnesses).
zipWithIndex.
groupBy { case (((_, d), _), _) => d }.
toVector.
sortBy { _._1 }.
map {
case (_, v) =>
(v.map { _._1._1._1 }.toVector, v.map { _._1._2 }.toVector, v.unzip._2.toVector)
}
}
/**
* extract elite using ref point heuristic
* @param population population
* @param fitness fitness
* @param references reference
* @param mu population size [size of elite is by default pop size / 2 (doubling population in breeding)]
* @tparam S state
* @tparam I individual
* @return
*/
def eliteWithReference[S, I](
population: Vector[I],
fitness: I => Vector[Double],
references: ReferencePoints,
mu: Int)(implicit rng: util.Random): Vector[I] = {
if (population.size <= 1) return population
// all successive Pareto fronts
val allfronts: Vector[(Vector[I], Vector[Vector[Double]], Vector[Int])] = successiveFronts(population, fitness)
//println(allfronts.size)
if (allfronts.size == 0) return population
val fronts = allfronts.map { _._1 }
val fitnesses: Vector[Vector[Vector[Double]]] = allfronts.map { _._2 }
val frontindices = allfronts.map { _._3 }
val allfitnesses: Vector[Vector[Double]] = fitnesses.reduce { _ ++ _ }
// check dimensions here (useful in NoisyNSGA3 if a foolish aggregation function has been provided)
assert(
allfitnesses.map(_.size).sum / allfitnesses.length == references.references.map(_.size).sum / references.references.length,
"Incompatible dimension between objectives and reference points")
val targetSize = mu
// returns everything if not enough population (rq : this shouldnt happen)
if (fronts.map { _.size }.sum < targetSize) fronts.flatten
else {
// else successive fronts
val res = new ArrayBuffer[I]
val cumsizes = new ArrayBuffer[Int]; cumsizes.append(0)
val cumpops = new ArrayBuffer[Vector[I]]; cumpops.append(Vector.empty) // better to cache sucessive pops
fronts.foreach { i =>
if (res.size < targetSize) res.appendAll(i)
cumsizes.append(cumsizes.last + i.size)
cumpops.append(cumpops.last ++ i)
}
// return everything if good number
if (res.size == targetSize) {
res.toVector
} else {
// needs last front to be added and remove it ; ! remove the first element of cumsizes
val lastfrontindex = cumsizes.tail.zipWithIndex.find { case (d, _) => d > targetSize }.get._2
// indices of individuals in the last front
val lastfrontinds = frontindices(lastfrontindex)
val provpop: Vector[I] = if (lastfrontindex > 0) cumpops.tail(lastfrontindex - 1) else Vector.empty
// next candidate points to be drawn in lastfront, given ref points -> normalize here
val (normfitnesses, normreferences) = normalize(allfitnesses, references)
def filter[T](v: Vector[T], indices: Vector[Int]): Vector[T] = v.zipWithIndex.filter { case (_, i) => indices.contains(i) }.map { _._1 }
// niching in association to reference points ; selection according to it - requires last front indices
val additionalPoints = referenceNichingSelection[S, I](
filter[Vector[Double]](normfitnesses, lastfrontinds),
normreferences,
filter[I](population, lastfrontinds),
targetSize - provpop.size)
provpop ++ additionalPoints
}
}
}
/**
* normalize objectives and compute normalized reference points
* - for each dimension :
* * compute ideal point
* * translate objectives to have min at 0
* * compute extreme points
* - construct simplex and compute intercepts a_j
* - for each dimension, normalize translated objective
*
* @param fitnesses vector of fitnesses
* @param references reference points
* @return (normalized fitnesses ; normalized reference points)
*/
def normalize(fitnesses: Vector[Vector[Double]], references: ReferencePoints): (Vector[Vector[Double]], Vector[Vector[Double]]) = {
// ideal point, translation and extreme points
val (translated, maxpoints) = translateAndMaxPoints(fitnesses)
//println("max points = " + maxpoints)
val intercepts = simplexIntercepts(maxpoints)
//println("intercepts = " + intercepts)
(normalizeMax(translated, intercepts), computeReferencePoints(references, intercepts))
}
/**
* Translate to have ideal point at \vec{0} ; compute max points
* ! in case of a common max point for different dimensions, the intercepts can not be computed
* -> we remove the common point and recompute the max points
*
* @param fitnesses fitnesses
* @return (translated fitnesses , indices of max point for each dimension)
*/
def translateAndMaxPoints(fitnesses: Vector[Vector[Double]]): (Vector[Vector[Double]], Vector[Vector[Double]]) = {
val d = fitnesses(0).length
//println(fitnesses.map(_.size))
val idealValues = fitnesses.transpose.map { _.min }
val translated = fitnesses.map { _.zip(idealValues).map { case (f, mi) => f - mi } }
//assert(translated.flatten.min >= 0.0, "negative translated data")
// max points minimize the Achievement Scalarizing Function
val weights: Vector[Vector[Double]] = Vector.tabulate(d, d) { case (i, j) => if (i == j) 1.0.toDouble else 1e-6.toDouble }
def maxPoints(values: Vector[Vector[Double]]): Vector[Vector[Double]] = {
val maxinds = weights.map { ei =>
values.map {
xi =>
xi.zip(ei).map {
case (xij, eij) => xij * eij
}.max
}.zipWithIndex.maxBy { case (dd, _) => dd }._2
}
if (maxinds.toSet.size < maxinds.size) {
//println("spurious double max! - removing one point")
val ginds: Seq[(Int, Vector[Int])] = maxinds.groupBy(i => i).toSeq
val removedind = ginds(ginds.map(_._2.size).indexWhere(_ > 1))._1
maxPoints(values.zipWithIndex.filter(_._2 != removedind).map(_._1))
} else maxinds.map(values(_))
}
(translated, maxPoints(translated))
}
/**
* Compute the intercepts on each dimension axis of the simplex generated by the N points given
* @param maxPoints (MUST have N points to have an hyperplan)
* @return
*/
def simplexIntercepts(maxPoints: Vector[Vector[Double]]): Vector[Double] = {
// ensure that no dimension is flat - otherwise the intercept is infinite
// arbitrarily x2 point with min norm other dimension, /2 with max (then strictly not max point - but flat objective should not be used
// and quickly disappears for the embedding dimension in NoisyEA after first gen
// note that this will not work if all dimensions are flat
val dimflatness = maxPoints.transpose.map(_.max).zip(maxPoints.transpose.map(_.min)).map { case (ma, mi) => ma - mi }
val modifinds: Vector[Option[(Int, Int)]] = dimflatness.zipWithIndex.map {
case (delta, d) => if (delta != 0.0) None else {
val norms = maxPoints.map(_.zipWithIndex.map { case (x, dd) => if (dd == d) 0.0 else x * x }.sum)
val (mi, ma) = (norms.min, norms.max)
Some((norms.indexOf(mi), norms.indexOf(ma)))
}
}
val correctedPoints = maxPoints.zipWithIndex.map {
case (p, i) =>
p.zip(modifinds).map {
case (x, None) => x
case (x, Some((imin, _))) if imin == i => 2 * x
case (x, Some((_, imax))) if imax == i => x / 2
case (x, _) => x
}
}
val lastPoint = correctedPoints(correctedPoints.length - 1)
val dim = lastPoint.size
val translated: Vector[Vector[Double]] = correctedPoints.map { _.zip(lastPoint).map { case (xij, x1j) => xij - x1j } }
// compute cross-product
val coefs = (0 until dim).map { i =>
new LUDecomposition(
MatrixUtils.createRealMatrix(
translated.dropRight(1).map(_.toArray).toArray ++ Array(Array.tabulate(dim)(j => if (j == i) 1.0.toDouble else 0.0.toDouble)))).getDeterminant
}
// hyperplan equation is then coefs \cdot (x - x0) = 0 -> intercepts at xj=0 for j != i
val intercepts = (0 until dim).map { i =>
lastPoint(i) + coefs.zip(lastPoint).zipWithIndex.filter(c => c._2 != i).map { case ((c, x), _) => c * x / coefs(i) }.sum
}.toVector
assert(!intercepts.exists(_.isNaN), "Simplex intercepts have NaN")
intercepts
}
/**
* normalize to have max at 1
* @param points points
* @param maxvals max values for each dimension
* @return
*/
def normalizeMax(points: Vector[Vector[Double]], maxvals: Vector[Double]): Vector[Vector[Double]] =
points.transpose.zip(maxvals).map { case (p, m) => p.map { _ / m } }.transpose
/**
* normalize ref points if needed (when non normalized reference points provided by the user are used)
* @param references references
* @param intercepts intercepts
* @return
*/
def computeReferencePoints(references: ReferencePoints, intercepts: Vector[Double]): Vector[Vector[Double]] = references match {
case ReferencePoints(r, false) => normalizeMax(r, intercepts)
case ReferencePoints(r, true) => r
}
/**
* Aggregate normalized fitnesses on reference points ; select on this.
* @param normalizedFitnesses normalized fitness values
* @param normalizedReferences normalized reference points
* @param pointsNumber number of points to select
* @return indices of selected individuals
* (population not needed at this stage)
*/
def referenceNichingSelection[S, I](
normalizedFitnesses: Vector[Vector[Double]],
normalizedReferences: Vector[Vector[Double]],
population: Vector[I],
pointsNumber: Int)(implicit rng: util.Random): Vector[I] = {
//println("Adding " + pointsNumber + " points among " + population.size)
//println("Normalized fitnesses length = " + normalizedFitnesses.length)
//val normFitnessMap = population.zip(normalizedFitnesses).toMap
val assocMap = associateReferencePoints(normalizedFitnesses, normalizedReferences, population) // associate points to references
//println("association of ref points = "+assocMap)
val (finalAssocMap, selected) = pointsSelection(assocMap, Vector.empty, pointsNumber)
//println("distinct niched ref points = " + selected.map { _._2 }.distinct)
//println("rel min x sel points = " + selected.map(s => normFitnessMap(s._1)(0)).min)
//println("rel min y sel points = " + selected.map(s => normFitnessMap(s._1)(1)).min)
selected.map { _._1 }
}
/**
* Compute reference lines, distances, and associate points to references
* - unoptimized, shouldnt recreate the matrices at each run
* @param points points
* @param references references
* @param population population
* @return map point i => ref point j,distance
*/
def associateReferencePoints[I](
points: Vector[Vector[Double]],
references: Vector[Vector[Double]],
population: Vector[I]): Map[I, (Int, Double)] = {
assert(references.map(_.filter(_.isNaN).isEmpty).reduce(_ && _), "Ref points have NaN")
val refnormsquared = references.map { _.map { x => x * x }.sum }
//println(refnormsquared)
// projection of x on dim is (\vec{u}\cdot \vec{x} \vec{u}) with \vec{u} = \vec{r}_dim / ||\vec{r}_dim||
def proj(dim: Int, x: Vector[Double]): Vector[Double] = {
val w = MatrixUtils.createColumnRealMatrix(references(dim).toArray)
w.multiply(MatrixUtils.createRowRealMatrix(x.toArray)).multiply(w).getColumn(0).map { _ / refnormsquared(dim) }.toVector
}
points.zip(population).map {
case (point, individual) =>
// for each reference point, compute distance using projection
val dists = references.indices.map {
i =>
val projected = proj(i, point)
//println(projected)
math.sqrt(point.zip(projected).map { case (x, y) => (x - y) * (x - y) }.sum)
}
val mindist = dists.min
//println(dists)
(individual, (dists.zipWithIndex.filter { case (d, _) => d == mindist }.map { case (_, j) => j }.head, mindist))
}.toMap
}
/**
* Select points given the association to closest reference point
* @param associationMap association map: individual => (index of ref point, distance)
* @param selected points already selected
* @param toselect number of points to select
* @param rng rng
* @tparam I individual
* @return (association map, selected individuals)
*/
def pointsSelection[I](
associationMap: Map[I, (Int, Double)],
selected: Vector[(I, Int)],
toselect: Int)(implicit rng: util.Random): (Map[I, (Int, Double)], Vector[(I, Int)]) = {
toselect match {
case n if n == 0 => (associationMap, selected)
case _ =>
val selectedRefCount = selected.groupBy(_._2).toSeq.map { g => (g._1, g._2.size) }.toMap
val refCount = associationMap.toSeq.map { _._2._1 }.toVector.distinct.map { j => (j, selectedRefCount.getOrElse(j, 0)) }.toMap
val (jmin, _) = refCount.toVector.minBy(_._2) // index of ref point with minimal number of associated points
val candidatePoints = associationMap.filter { case (_, (j, _)) => j == jmin } // cannot be 0 the way it is constructed
val newpoint = if (refCount(jmin) == 0) candidatePoints.toVector.minBy { _._2._2 }._1 else {
candidatePoints.toVector(rng.nextInt(candidatePoints.toVector.size))._1
}
pointsSelection(associationMap.filter { _._1 != newpoint }, selected ++ Vector((newpoint, jmin)), toselect - 1)
}
}
}