mgo.evolution.ranking.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright (C) 2015 Romain Reuillon
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package mgo.evolution
import cats._
import cats.data._
import cats.implicits._
import mgo.evolution.algorithm.HitMap
import mgo.evolution.diversity._
import mgo.evolution.dominance._
import mgo.evolution.niche._
import mgo.tools._
import scala.language.higherKinds
object ranking {
/**
* Compute the ranks of the individuals in the same order
*/
type Ranking[M[_], I] = Kleisli[M, Vector[I], Vector[Later[Int]]]
object Ranking {
def apply[M[_]: cats.Monad, I](f: Vector[I] => M[Vector[Later[Int]]]): Ranking[M, I] = Kleisli(f)
}
def monoObjectiveRanking[M[_]: cats.Monad, I](fitness: I => Double): Ranking[M, I] =
Ranking((values: Vector[I]) => {
val byFitness = values.map(fitness).zipWithIndex.sortBy { case (v, _) => v }
def ranks(fitnesses: List[Double], lastValue: Double = Double.NegativeInfinity, rank: Int = 0, rs: List[Int] = List()): List[Int] =
fitnesses match {
case h :: t =>
if (h > lastValue) ranks(t, h, rank + 1, rank :: rs)
else ranks(t, h, rank, rank :: rs)
case Nil => rs.reverse
}
val ranksValue = ranks(byFitness.unzip._1.toList)
(ranksValue zip byFitness.unzip._2).sortBy { case (_, r) => r }.unzip._1.toVector.map(r => Later(r))
}.pure[M])
// def hyperVolumeRanking[M[_]: cats.Monad, I](referencePoint: Vector[Double], fitness: I => Vector[Double]): Ranking[M, I] =
// Ranking((values: Vector[I]) =>
// HierarchicalRanking.downRank(Hypervolume.contributions(values.map(e => fitness(e)), referencePoint)).pure[M])
//
// def hierarchicalRanking[M[_]: cats.Monad, I](fitness: I => Vector[Double]): Ranking[M, I] =
// Ranking((values: Vector[I]) =>
// HierarchicalRanking.upRank(values.map(v => fitness(v))).pure[M])
def numberOfDominating[I](fitness: I => Vector[Double], values: Vector[I], dominance: Dominance = nonStrictDominance): Vector[Later[Int]] = {
val fitnesses = values.map(i => fitness(i))
def ranks =
fitnesses.zipWithIndex.map {
case (v1, index1) =>
def containsNaN = v1.exists(_.isNaN)
def otherIndividuals = fitnesses.zipWithIndex.filter { case (_, index2) => index1 != index2 }
def numberOfDominatingIndividual = otherIndividuals.count { case (v2, _) => dominance.isDominated(v1, v2) }
Later(if (containsNaN) Int.MaxValue else numberOfDominatingIndividual)
}
ranks
}
// def profileRanking[M[_]: cats.Monad, I](niche: Niche[I, Int], fitness: I => Double): Ranking[M, I] =
// Ranking((population: Vector[I]) => {
// val (points, indexes) =
// population.map {
// i => (niche(i).toDouble, fitness(i))
// }.zipWithIndex.sortBy(_._1._1).unzip
//
// def signedSurface(p1: Point2D, p2: Point2D, p3: Point2D) = {
// val surface = mgo.tools.surface(p1, p2, p3)
// if (isUpper(p1, p3, p2)) -surface else surface
// }
//
// val contributions =
// points match {
// case Seq() => Seq.empty
// case Seq(x) => Seq(1.0)
// case s =>
// val first = s(0)
// val second = s(1)
// val zero = (first.x - (second.x - first.x), second.y)
//
// val leftSurface = signedSurface(zero, first, second)
//
// val preLast = s(s.length - 2)
// val last = s(s.length - 1)
// val postLast = (last.x + (last.x - preLast.x), preLast.y)
//
// val rightSurface = signedSurface(preLast, last, postLast)
//
// val middlePoints = s.sliding(3).filter(_.size == 3).map {
// s => signedSurface(s(0), s(1), s(2))
// }
//
// val surfaces = (Seq(leftSurface) ++ middlePoints ++ Seq(rightSurface)).zip(indexes).sortBy(_._2).map(_._1)
// val smallest = surfaces.min
// surfaces.map(s => s - smallest)
// }
//
// HierarchicalRanking.downRank(contributions.toVector)
// }.pure[M])
//TODO: Lazy ne sert à rien ici. On pourrait redefinir le type Ranking en Ranking[M,I,K] avec K est de typeclass Order,
def hitCountRanking[S, I](s: S, population: Vector[I], cell: I => Vector[Int], hitmap: monocle.Lens[S, HitMap]): Vector[Int] = {
def hitCount(cell: Vector[Int]): Int = hitmap.get(s).getOrElse(cell, 0)
population.map { i => hitCount(cell(i)) }
}
/**** Generic functions on rankings ****/
// def reversedRanking[M[_]: cats.Monad, I](ranking: Ranking[M, I]): Ranking[M, I] =
// Ranking((population: Vector[I]) => ranking(population).map { ranks => ranks.map { rank => rank.map(x => -x) } })
def paretoRanking[I](population: Vector[I], fitness: I => Vector[Double], dominance: Dominance = nonStrictDominance): Vector[Eval[Int]] =
numberOfDominating(fitness, population, dominance).map(_.map(x => -x))
//TODO: the following functions don't produce rankings and don't belong here.
def rankAndDiversity[M[_]: cats.Monad, I](ranking: Ranking[M, I], diversity: Diversity[M, I]): Kleisli[M, Vector[I], Vector[(Later[Int], Later[Double])]] =
Kleisli((population: Vector[I]) =>
for {
r <- ranking(population)
d <- diversity(population)
} yield r zip d)
def paretoRankingMinAndCrowdingDiversity[I](population: Vector[I], fitness: I => Vector[Double], random: scala.util.Random): Vector[(Eval[Int], Double)] =
paretoRanking(population, fitness) zip crowdingDistance(population, fitness, random)
def worstParetoRanking: (Later[Int], Double) = (Later(Int.MinValue), Double.NegativeInfinity)
def rank[M[_]: cats.Monad, I, K](ranking: Kleisli[M, Vector[I], Vector[K]]): Kleisli[M, Vector[I], Vector[(I, K)]] = Kleisli[M, Vector[I], Vector[(I, K)]] { is =>
for {
rs <- ranking.run(is)
} yield is zip rs
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy