All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.imgproc.Imgproc Maven / Gradle / Ivy

There is a newer version: 4.9.0-0
Show newest version

//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.imgproc;

import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.MatOfInt4;
import org.opencv.core.MatOfPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.RotatedRect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.core.TermCriteria;
import org.opencv.utils.Converters;

public class Imgproc {

    private static final int
            IPL_BORDER_CONSTANT = 0,
            IPL_BORDER_REPLICATE = 1,
            IPL_BORDER_REFLECT = 2,
            IPL_BORDER_WRAP = 3,
            IPL_BORDER_REFLECT_101 = 4,
            IPL_BORDER_TRANSPARENT = 5,
            CV_INTER_NN = 0,
            CV_INTER_LINEAR = 1,
            CV_INTER_CUBIC = 2,
            CV_INTER_AREA = 3,
            CV_INTER_LANCZOS4 = 4,
            CV_MOP_ERODE = 0,
            CV_MOP_DILATE = 1,
            CV_MOP_OPEN = 2,
            CV_MOP_CLOSE = 3,
            CV_MOP_GRADIENT = 4,
            CV_MOP_TOPHAT = 5,
            CV_MOP_BLACKHAT = 6,
            CV_RETR_EXTERNAL = 0,
            CV_RETR_LIST = 1,
            CV_RETR_CCOMP = 2,
            CV_RETR_TREE = 3,
            CV_RETR_FLOODFILL = 4,
            CV_CHAIN_APPROX_NONE = 1,
            CV_CHAIN_APPROX_SIMPLE = 2,
            CV_CHAIN_APPROX_TC89_L1 = 3,
            CV_CHAIN_APPROX_TC89_KCOS = 4,
            CV_THRESH_BINARY = 0,
            CV_THRESH_BINARY_INV = 1,
            CV_THRESH_TRUNC = 2,
            CV_THRESH_TOZERO = 3,
            CV_THRESH_TOZERO_INV = 4,
            CV_THRESH_MASK = 7,
            CV_THRESH_OTSU = 8;


    public static final int
            CV_BLUR_NO_SCALE = 0,
            CV_BLUR = 1,
            CV_GAUSSIAN = 2,
            CV_MEDIAN = 3,
            CV_BILATERAL = 4,
            CV_GAUSSIAN_5x5 = 7,
            CV_SCHARR = -1,
            CV_MAX_SOBEL_KSIZE = 7,
            CV_RGBA2mRGBA = 125,
            CV_mRGBA2RGBA = 126,
            CV_WARP_FILL_OUTLIERS = 8,
            CV_WARP_INVERSE_MAP = 16,
            CV_SHAPE_RECT = 0,
            CV_SHAPE_CROSS = 1,
            CV_SHAPE_ELLIPSE = 2,
            CV_SHAPE_CUSTOM = 100,
            CV_CHAIN_CODE = 0,
            CV_LINK_RUNS = 5,
            CV_POLY_APPROX_DP = 0,
            CV_CONTOURS_MATCH_I1 = 1,
            CV_CONTOURS_MATCH_I2 = 2,
            CV_CONTOURS_MATCH_I3 = 3,
            CV_CLOCKWISE = 1,
            CV_COUNTER_CLOCKWISE = 2,
            CV_COMP_CORREL = 0,
            CV_COMP_CHISQR = 1,
            CV_COMP_INTERSECT = 2,
            CV_COMP_BHATTACHARYYA = 3,
            CV_COMP_HELLINGER = CV_COMP_BHATTACHARYYA,
            CV_DIST_MASK_3 = 3,
            CV_DIST_MASK_5 = 5,
            CV_DIST_MASK_PRECISE = 0,
            CV_DIST_LABEL_CCOMP = 0,
            CV_DIST_LABEL_PIXEL = 1,
            CV_DIST_USER = -1,
            CV_DIST_L1 = 1,
            CV_DIST_L2 = 2,
            CV_DIST_C = 3,
            CV_DIST_L12 = 4,
            CV_DIST_FAIR = 5,
            CV_DIST_WELSCH = 6,
            CV_DIST_HUBER = 7,
            CV_CANNY_L2_GRADIENT = (1 << 31),
            CV_HOUGH_STANDARD = 0,
            CV_HOUGH_PROBABILISTIC = 1,
            CV_HOUGH_MULTI_SCALE = 2,
            CV_HOUGH_GRADIENT = 3,
            BORDER_REPLICATE = IPL_BORDER_REPLICATE,
            BORDER_CONSTANT = IPL_BORDER_CONSTANT,
            BORDER_REFLECT = IPL_BORDER_REFLECT,
            BORDER_WRAP = IPL_BORDER_WRAP,
            BORDER_REFLECT_101 = IPL_BORDER_REFLECT_101,
            BORDER_REFLECT101 = BORDER_REFLECT_101,
            BORDER_TRANSPARENT = IPL_BORDER_TRANSPARENT,
            BORDER_DEFAULT = BORDER_REFLECT_101,
            BORDER_ISOLATED = 16,
            KERNEL_GENERAL = 0,
            KERNEL_SYMMETRICAL = 1,
            KERNEL_ASYMMETRICAL = 2,
            KERNEL_SMOOTH = 4,
            KERNEL_INTEGER = 8,
            MORPH_ERODE = CV_MOP_ERODE,
            MORPH_DILATE = CV_MOP_DILATE,
            MORPH_OPEN = CV_MOP_OPEN,
            MORPH_CLOSE = CV_MOP_CLOSE,
            MORPH_GRADIENT = CV_MOP_GRADIENT,
            MORPH_TOPHAT = CV_MOP_TOPHAT,
            MORPH_BLACKHAT = CV_MOP_BLACKHAT,
            MORPH_RECT = 0,
            MORPH_CROSS = 1,
            MORPH_ELLIPSE = 2,
            GHT_POSITION = 0,
            GHT_SCALE = 1,
            GHT_ROTATION = 2,
            INTER_NEAREST = CV_INTER_NN,
            INTER_LINEAR = CV_INTER_LINEAR,
            INTER_CUBIC = CV_INTER_CUBIC,
            INTER_AREA = CV_INTER_AREA,
            INTER_LANCZOS4 = CV_INTER_LANCZOS4,
            INTER_MAX = 7,
            WARP_INVERSE_MAP = CV_WARP_INVERSE_MAP,
            INTER_BITS = 5,
            INTER_BITS2 = INTER_BITS*2,
            INTER_TAB_SIZE = (1<Finds edges in an image using the [Canny86] algorithm.

* *

The function finds edges in the input image image and marks them * in the output map edges using the Canny algorithm. The smallest * value between threshold1 and threshold2 is used for * edge linking. The largest value is used to find initial segments of strong * edges. See http://en.wikipedia.org/wiki/Canny_edge_detector

* *

Note:

*
    *
  • An example on using the canny edge detector can be found at * opencv_source_code/samples/cpp/edge.cpp *
  • (Python) An example on using the canny edge detector can be found at * opencv_source_code/samples/python/edge.py *
* * @param image single-channel 8-bit input image. * @param edges output edge map; it has the same size and type as * image. * @param threshold1 first threshold for the hysteresis procedure. * @param threshold2 second threshold for the hysteresis procedure. * @param apertureSize aperture size for the "Sobel" operator. * @param L2gradient a flag, indicating whether a more accurate L_2 * norm =sqrt((dI/dx)^2 + (dI/dy)^2) should be used to calculate the * image gradient magnitude (L2gradient=true), or whether the * default L_1 norm =|dI/dx|+|dI/dy| is enough * (L2gradient=false). * * @see org.opencv.imgproc.Imgproc.Canny */ public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, int apertureSize, boolean L2gradient) { Canny_0(image.nativeObj, edges.nativeObj, threshold1, threshold2, apertureSize, L2gradient); return; } /** *

Finds edges in an image using the [Canny86] algorithm.

* *

The function finds edges in the input image image and marks them * in the output map edges using the Canny algorithm. The smallest * value between threshold1 and threshold2 is used for * edge linking. The largest value is used to find initial segments of strong * edges. See http://en.wikipedia.org/wiki/Canny_edge_detector

* *

Note:

*
    *
  • An example on using the canny edge detector can be found at * opencv_source_code/samples/cpp/edge.cpp *
  • (Python) An example on using the canny edge detector can be found at * opencv_source_code/samples/python/edge.py *
* * @param image single-channel 8-bit input image. * @param edges output edge map; it has the same size and type as * image. * @param threshold1 first threshold for the hysteresis procedure. * @param threshold2 second threshold for the hysteresis procedure. * * @see org.opencv.imgproc.Imgproc.Canny */ public static void Canny(Mat image, Mat edges, double threshold1, double threshold2) { Canny_1(image.nativeObj, edges.nativeObj, threshold1, threshold2); return; } // // C++: void GaussianBlur(Mat src, Mat& dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT) // /** *

Blurs an image using a Gaussian filter.

* *

The function convolves the source image with the specified Gaussian kernel. * In-place filtering is supported.

* * @param src input image; the image can have any number of channels, which are * processed independently, but the depth should be CV_8U, * CV_16U, CV_16S, CV_32F or * CV_64F. * @param dst output image of the same size and type as src. * @param ksize Gaussian kernel size. ksize.width and * ksize.height can differ but they both must be positive and odd. * Or, they can be zero's and then they are computed from sigma*. * @param sigmaX Gaussian kernel standard deviation in X direction. * @param sigmaY Gaussian kernel standard deviation in Y direction; if * sigmaY is zero, it is set to be equal to sigmaX, if * both sigmas are zeros, they are computed from ksize.width and * ksize.height, respectively (see "getGaussianKernel" for * details); to fully control the result regardless of possible future * modifications of all this semantics, it is recommended to specify all of * ksize, sigmaX, and sigmaY. * @param borderType pixel extrapolation method (see "borderInterpolate" for * details). * * @see org.opencv.imgproc.Imgproc.GaussianBlur * @see org.opencv.imgproc.Imgproc#sepFilter2D * @see org.opencv.imgproc.Imgproc#medianBlur * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#blur * @see org.opencv.imgproc.Imgproc#filter2D * @see org.opencv.imgproc.Imgproc#bilateralFilter */ public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX, double sigmaY, int borderType) { GaussianBlur_0(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX, sigmaY, borderType); return; } /** *

Blurs an image using a Gaussian filter.

* *

The function convolves the source image with the specified Gaussian kernel. * In-place filtering is supported.

* * @param src input image; the image can have any number of channels, which are * processed independently, but the depth should be CV_8U, * CV_16U, CV_16S, CV_32F or * CV_64F. * @param dst output image of the same size and type as src. * @param ksize Gaussian kernel size. ksize.width and * ksize.height can differ but they both must be positive and odd. * Or, they can be zero's and then they are computed from sigma*. * @param sigmaX Gaussian kernel standard deviation in X direction. * @param sigmaY Gaussian kernel standard deviation in Y direction; if * sigmaY is zero, it is set to be equal to sigmaX, if * both sigmas are zeros, they are computed from ksize.width and * ksize.height, respectively (see "getGaussianKernel" for * details); to fully control the result regardless of possible future * modifications of all this semantics, it is recommended to specify all of * ksize, sigmaX, and sigmaY. * * @see org.opencv.imgproc.Imgproc.GaussianBlur * @see org.opencv.imgproc.Imgproc#sepFilter2D * @see org.opencv.imgproc.Imgproc#medianBlur * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#blur * @see org.opencv.imgproc.Imgproc#filter2D * @see org.opencv.imgproc.Imgproc#bilateralFilter */ public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX, double sigmaY) { GaussianBlur_1(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX, sigmaY); return; } /** *

Blurs an image using a Gaussian filter.

* *

The function convolves the source image with the specified Gaussian kernel. * In-place filtering is supported.

* * @param src input image; the image can have any number of channels, which are * processed independently, but the depth should be CV_8U, * CV_16U, CV_16S, CV_32F or * CV_64F. * @param dst output image of the same size and type as src. * @param ksize Gaussian kernel size. ksize.width and * ksize.height can differ but they both must be positive and odd. * Or, they can be zero's and then they are computed from sigma*. * @param sigmaX Gaussian kernel standard deviation in X direction. * * @see org.opencv.imgproc.Imgproc.GaussianBlur * @see org.opencv.imgproc.Imgproc#sepFilter2D * @see org.opencv.imgproc.Imgproc#medianBlur * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#blur * @see org.opencv.imgproc.Imgproc#filter2D * @see org.opencv.imgproc.Imgproc#bilateralFilter */ public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX) { GaussianBlur_2(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX); return; } // // C++: void HoughCircles(Mat image, Mat& circles, int method, double dp, double minDist, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0) // /** *

Finds circles in a grayscale image using the Hough transform.

* *

The function finds circles in a grayscale image using a modification of the * Hough transform. * Example:

* *

// C++ code:

* *

#include

* *

#include

* *

#include

* *

using namespace cv;

* *

int main(int argc, char argv)

* * *

Mat img, gray;

* *

if(argc != 2 && !(img=imread(argv[1], 1)).data)

* *

return -1;

* *

cvtColor(img, gray, CV_BGR2GRAY);

* *

// smooth it, otherwise a lot of false circles may be detected

* *

GaussianBlur(gray, gray, Size(9, 9), 2, 2);

* *

vector circles;

* *

HoughCircles(gray, circles, CV_HOUGH_GRADIENT,

* *

2, gray->rows/4, 200, 100);

* *

for(size_t i = 0; i < circles.size(); i++)

* * *

Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));

* *

int radius = cvRound(circles[i][2]);

* *

// draw the circle center

* *

circle(img, center, 3, Scalar(0,255,0), -1, 8, 0);

* *

// draw the circle outline

* *

circle(img, center, radius, Scalar(0,0,255), 3, 8, 0);

* * *

namedWindow("circles", 1);

* *

imshow("circles", img);

* *

return 0;

* * *

Note: Usually the function detects the centers of circles well. However, it * may fail to find correct radii. You can assist to the function by specifying * the radius range (minRadius and maxRadius) if you * know it. Or, you may ignore the returned radius, use only the center, and * find the correct radius using an additional procedure. *

* *

Note:

*
    *
  • An example using the Hough circle detector can be found at * opencv_source_code/samples/cpp/houghcircles.cpp *
* * @param image 8-bit, single-channel, grayscale input image. * @param circles Output vector of found circles. Each vector is encoded as a * 3-element floating-point vector (x, y, radius). * @param method Detection method to use. Currently, the only implemented method * is CV_HOUGH_GRADIENT, which is basically *21HT*, described in * [Yuen90]. * @param dp Inverse ratio of the accumulator resolution to the image * resolution. For example, if dp=1, the accumulator has the same * resolution as the input image. If dp=2, the accumulator has half * as big width and height. * @param minDist Minimum distance between the centers of the detected circles. * If the parameter is too small, multiple neighbor circles may be falsely * detected in addition to a true one. If it is too large, some circles may be * missed. * @param param1 First method-specific parameter. In case of CV_HOUGH_GRADIENT, * it is the higher threshold of the two passed to the "Canny" edge detector * (the lower one is twice smaller). * @param param2 Second method-specific parameter. In case of CV_HOUGH_GRADIENT, * it is the accumulator threshold for the circle centers at the detection * stage. The smaller it is, the more false circles may be detected. Circles, * corresponding to the larger accumulator values, will be returned first. * @param minRadius Minimum circle radius. * @param maxRadius Maximum circle radius. * * @see org.opencv.imgproc.Imgproc.HoughCircles * @see org.opencv.imgproc.Imgproc#minEnclosingCircle * @see org.opencv.imgproc.Imgproc#fitEllipse */ public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius) { HoughCircles_0(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2, minRadius, maxRadius); return; } /** *

Finds circles in a grayscale image using the Hough transform.

* *

The function finds circles in a grayscale image using a modification of the * Hough transform. * Example:

* *

// C++ code:

* *

#include

* *

#include

* *

#include

* *

using namespace cv;

* *

int main(int argc, char argv)

* * *

Mat img, gray;

* *

if(argc != 2 && !(img=imread(argv[1], 1)).data)

* *

return -1;

* *

cvtColor(img, gray, CV_BGR2GRAY);

* *

// smooth it, otherwise a lot of false circles may be detected

* *

GaussianBlur(gray, gray, Size(9, 9), 2, 2);

* *

vector circles;

* *

HoughCircles(gray, circles, CV_HOUGH_GRADIENT,

* *

2, gray->rows/4, 200, 100);

* *

for(size_t i = 0; i < circles.size(); i++)

* * *

Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));

* *

int radius = cvRound(circles[i][2]);

* *

// draw the circle center

* *

circle(img, center, 3, Scalar(0,255,0), -1, 8, 0);

* *

// draw the circle outline

* *

circle(img, center, radius, Scalar(0,0,255), 3, 8, 0);

* * *

namedWindow("circles", 1);

* *

imshow("circles", img);

* *

return 0;

* * *

Note: Usually the function detects the centers of circles well. However, it * may fail to find correct radii. You can assist to the function by specifying * the radius range (minRadius and maxRadius) if you * know it. Or, you may ignore the returned radius, use only the center, and * find the correct radius using an additional procedure. *

* *

Note:

*
    *
  • An example using the Hough circle detector can be found at * opencv_source_code/samples/cpp/houghcircles.cpp *
* * @param image 8-bit, single-channel, grayscale input image. * @param circles Output vector of found circles. Each vector is encoded as a * 3-element floating-point vector (x, y, radius). * @param method Detection method to use. Currently, the only implemented method * is CV_HOUGH_GRADIENT, which is basically *21HT*, described in * [Yuen90]. * @param dp Inverse ratio of the accumulator resolution to the image * resolution. For example, if dp=1, the accumulator has the same * resolution as the input image. If dp=2, the accumulator has half * as big width and height. * @param minDist Minimum distance between the centers of the detected circles. * If the parameter is too small, multiple neighbor circles may be falsely * detected in addition to a true one. If it is too large, some circles may be * missed. * * @see org.opencv.imgproc.Imgproc.HoughCircles * @see org.opencv.imgproc.Imgproc#minEnclosingCircle * @see org.opencv.imgproc.Imgproc#fitEllipse */ public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist) { HoughCircles_1(image.nativeObj, circles.nativeObj, method, dp, minDist); return; } // // C++: void HoughLines(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0) // /** *

Finds lines in a binary image using the standard Hough transform.

* *

The function implements the standard or standard multi-scale Hough transform * algorithm for line detection. See http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm * for a good explanation of Hough transform. * See also the example in "HoughLinesP" description.

* *

Note:

*
    *
  • An example using the Hough line detector can be found at * opencv_source_code/samples/cpp/houghlines.cpp *
* * @param image 8-bit, single-channel binary source image. The image may be * modified by the function. * @param lines Output vector of lines. Each line is represented by a * two-element vector (rho, theta). rho is the distance from * the coordinate origin (0,0) (top-left corner of the image). * theta is the line rotation angle in radians (0 ~ vertical line, * pi/2 ~ horizontal line). * @param rho Distance resolution of the accumulator in pixels. * @param theta Angle resolution of the accumulator in radians. * @param threshold Accumulator threshold parameter. Only those lines are * returned that get enough votes (>threshold). * @param srn For the multi-scale Hough transform, it is a divisor for the * distance resolution rho. The coarse accumulator distance * resolution is rho and the accurate accumulator resolution is * rho/srn. If both srn=0 and stn=0, the * classical Hough transform is used. Otherwise, both these parameters should be * positive. * @param stn For the multi-scale Hough transform, it is a divisor for the * distance resolution theta. * * @see org.opencv.imgproc.Imgproc.HoughLines */ public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn) { HoughLines_0(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn); return; } /** *

Finds lines in a binary image using the standard Hough transform.

* *

The function implements the standard or standard multi-scale Hough transform * algorithm for line detection. See http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm * for a good explanation of Hough transform. * See also the example in "HoughLinesP" description.

* *

Note:

*
    *
  • An example using the Hough line detector can be found at * opencv_source_code/samples/cpp/houghlines.cpp *
* * @param image 8-bit, single-channel binary source image. The image may be * modified by the function. * @param lines Output vector of lines. Each line is represented by a * two-element vector (rho, theta). rho is the distance from * the coordinate origin (0,0) (top-left corner of the image). * theta is the line rotation angle in radians (0 ~ vertical line, * pi/2 ~ horizontal line). * @param rho Distance resolution of the accumulator in pixels. * @param theta Angle resolution of the accumulator in radians. * @param threshold Accumulator threshold parameter. Only those lines are * returned that get enough votes (>threshold). * * @see org.opencv.imgproc.Imgproc.HoughLines */ public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold) { HoughLines_1(image.nativeObj, lines.nativeObj, rho, theta, threshold); return; } // // C++: void HoughLinesP(Mat image, Mat& lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap = 0) // /** *

Finds line segments in a binary image using the probabilistic Hough * transform.

* *

The function implements the probabilistic Hough transform algorithm for line * detection, described in[Matas00]. See the line detection example below: *

* *

// C++ code:

* *

/ * This is a standalone program. Pass an image name as the first parameter

* *

of the program. Switch between standard and probabilistic Hough transform

* *

by changing "#if 1" to "#if 0" and back * /

* *

#include

* *

#include

* *

#include

* *

using namespace cv;

* *

int main(int argc, char argv)

* * *

Mat src, dst, color_dst;

* *

if(argc != 2 || !(src=imread(argv[1], 0)).data)

* *

return -1;

* *

Canny(src, dst, 50, 200, 3);

* *

cvtColor(dst, color_dst, CV_GRAY2BGR);

* *

#if 0

* *

vector lines;

* *

HoughLines(dst, lines, 1, CV_PI/180, 100);

* *

for(size_t i = 0; i < lines.size(); i++)

* * *

float rho = lines[i][0];

* *

float theta = lines[i][1];

* *

double a = cos(theta), b = sin(theta);

* *

double x0 = a*rho, y0 = b*rho;

* *

Point pt1(cvRound(x0 + 1000*(-b)),

* *

cvRound(y0 + 1000*(a)));

* *

Point pt2(cvRound(x0 - 1000*(-b)),

* *

cvRound(y0 - 1000*(a)));

* *

line(color_dst, pt1, pt2, Scalar(0,0,255), 3, 8);

* * *

#else

* *

vector lines;

* *

HoughLinesP(dst, lines, 1, CV_PI/180, 80, 30, 10);

* *

for(size_t i = 0; i < lines.size(); i++)

* * *

line(color_dst, Point(lines[i][0], lines[i][1]),

* *

Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8);

* * *

#endif

* *

namedWindow("Source", 1);

* *

imshow("Source", src);

* *

namedWindow("Detected Lines", 1);

* *

imshow("Detected Lines", color_dst);

* *

waitKey(0);

* *

return 0;

* * *

This is a sample picture the function parameters have been tuned for:

* *

And this is the output of the above program in case of the probabilistic * Hough transform:

* * @param image 8-bit, single-channel binary source image. The image may be * modified by the function. * @param lines Output vector of lines. Each line is represented by a 4-element * vector (x_1, y_1, x_2, y_2), where (x_1,y_1) and (x_2, * y_2) are the ending points of each detected line segment. * @param rho Distance resolution of the accumulator in pixels. * @param theta Angle resolution of the accumulator in radians. * @param threshold Accumulator threshold parameter. Only those lines are * returned that get enough votes (>threshold). * @param minLineLength Minimum line length. Line segments shorter than that are * rejected. * @param maxLineGap Maximum allowed gap between points on the same line to link * them. * * @see org.opencv.imgproc.Imgproc.HoughLinesP */ public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold, double minLineLength, double maxLineGap) { HoughLinesP_0(image.nativeObj, lines.nativeObj, rho, theta, threshold, minLineLength, maxLineGap); return; } /** *

Finds line segments in a binary image using the probabilistic Hough * transform.

* *

The function implements the probabilistic Hough transform algorithm for line * detection, described in[Matas00]. See the line detection example below: *

* *

// C++ code:

* *

/ * This is a standalone program. Pass an image name as the first parameter

* *

of the program. Switch between standard and probabilistic Hough transform

* *

by changing "#if 1" to "#if 0" and back * /

* *

#include

* *

#include

* *

#include

* *

using namespace cv;

* *

int main(int argc, char argv)

* * *

Mat src, dst, color_dst;

* *

if(argc != 2 || !(src=imread(argv[1], 0)).data)

* *

return -1;

* *

Canny(src, dst, 50, 200, 3);

* *

cvtColor(dst, color_dst, CV_GRAY2BGR);

* *

#if 0

* *

vector lines;

* *

HoughLines(dst, lines, 1, CV_PI/180, 100);

* *

for(size_t i = 0; i < lines.size(); i++)

* * *

float rho = lines[i][0];

* *

float theta = lines[i][1];

* *

double a = cos(theta), b = sin(theta);

* *

double x0 = a*rho, y0 = b*rho;

* *

Point pt1(cvRound(x0 + 1000*(-b)),

* *

cvRound(y0 + 1000*(a)));

* *

Point pt2(cvRound(x0 - 1000*(-b)),

* *

cvRound(y0 - 1000*(a)));

* *

line(color_dst, pt1, pt2, Scalar(0,0,255), 3, 8);

* * *

#else

* *

vector lines;

* *

HoughLinesP(dst, lines, 1, CV_PI/180, 80, 30, 10);

* *

for(size_t i = 0; i < lines.size(); i++)

* * *

line(color_dst, Point(lines[i][0], lines[i][1]),

* *

Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8);

* * *

#endif

* *

namedWindow("Source", 1);

* *

imshow("Source", src);

* *

namedWindow("Detected Lines", 1);

* *

imshow("Detected Lines", color_dst);

* *

waitKey(0);

* *

return 0;

* * *

This is a sample picture the function parameters have been tuned for:

* *

And this is the output of the above program in case of the probabilistic * Hough transform:

* * @param image 8-bit, single-channel binary source image. The image may be * modified by the function. * @param lines Output vector of lines. Each line is represented by a 4-element * vector (x_1, y_1, x_2, y_2), where (x_1,y_1) and (x_2, * y_2) are the ending points of each detected line segment. * @param rho Distance resolution of the accumulator in pixels. * @param theta Angle resolution of the accumulator in radians. * @param threshold Accumulator threshold parameter. Only those lines are * returned that get enough votes (>threshold). * * @see org.opencv.imgproc.Imgproc.HoughLinesP */ public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold) { HoughLinesP_1(image.nativeObj, lines.nativeObj, rho, theta, threshold); return; } // // C++: void HuMoments(Moments m, Mat& hu) // /** *

Calculates seven Hu invariants.

* *

The function calculates seven Hu invariants (introduced in [Hu62]; see also * http://en.wikipedia.org/wiki/Image_moment) defined as:

* *

hu[0]= eta _20+ eta _02 * hu[1]=(eta _20- eta _02)^2+4 eta _11^2 * hu[2]=(eta _30-3 eta _12)^2+ (3 eta _21- eta _03)^2 * hu[3]=(eta _30+ eta _12)^2+ (eta _21+ eta _03)^2 * hu[4]=(eta _30-3 eta _12)(eta _30+ eta _12)[(eta _30+ eta _12)^2-3(eta _21+ * eta _03)^2]+(3 eta _21- eta _03)(eta _21+ eta _03)[3(eta _30+ eta _12)^2-(eta * _21+ eta _03)^2] * hu[5]=(eta _20- eta _02)[(eta _30+ eta _12)^2- (eta _21+ eta _03)^2]+4 eta * _11(eta _30+ eta _12)(eta _21+ eta _03) * hu[6]=(3 eta _21- eta _03)(eta _21+ eta _03)[3(eta _30+ eta _12)^2-(eta _21+ * eta _03)^2]-(eta _30-3 eta _12)(eta _21+ eta _03)[3(eta _30+ eta _12)^2-(eta * _21+ eta _03)^2] *

* *

where eta_(ji) stands for Moments.nu_(ji).

* *

These values are proved to be invariants to the image scale, rotation, and * reflection except the seventh one, whose sign is changed by reflection. This * invariance is proved with the assumption of infinite image resolution. In * case of raster images, the computed Hu invariants for the original and * transformed images are a bit different.

* * @param m a m * @param hu Output Hu invariants. * * @see org.opencv.imgproc.Imgproc.HuMoments * @see org.opencv.imgproc.Imgproc#matchShapes */ public static void HuMoments(Moments m, Mat hu) { HuMoments_0(m.nativeObj, hu.nativeObj); return; } // // C++: void Laplacian(Mat src, Mat& dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) // /** *

Calculates the Laplacian of an image.

* *

The function calculates the Laplacian of the source image by adding up the * second x and y derivatives calculated using the Sobel operator:

* *

dst = Delta src = (d^2 src)/(dx^2) + (d^2 src)/(dy^2)

* *

This is done when ksize > 1. When ksize == 1, the * Laplacian is computed by filtering the image with the following 3 x * 3 aperture:

* *

vecthreethree 0101(-4)1010

* *

Note:

*
    *
  • An example using the Laplace transformation for edge detection can be * found at opencv_source_code/samples/cpp/laplace.cpp *
* * @param src Source image. * @param dst Destination image of the same size and the same number of channels * as src. * @param ddepth Desired depth of the destination image. * @param ksize Aperture size used to compute the second-derivative filters. See * "getDerivKernels" for details. The size must be positive and odd. * @param scale Optional scale factor for the computed Laplacian values. By * default, no scaling is applied. See "getDerivKernels" for details. * @param delta Optional delta value that is added to the results prior to * storing them in dst. * @param borderType Pixel extrapolation method. See "borderInterpolate" for * details. * * @see org.opencv.imgproc.Imgproc.Laplacian * @see org.opencv.imgproc.Imgproc#Scharr * @see org.opencv.imgproc.Imgproc#Sobel */ public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale, double delta, int borderType) { Laplacian_0(src.nativeObj, dst.nativeObj, ddepth, ksize, scale, delta, borderType); return; } /** *

Calculates the Laplacian of an image.

* *

The function calculates the Laplacian of the source image by adding up the * second x and y derivatives calculated using the Sobel operator:

* *

dst = Delta src = (d^2 src)/(dx^2) + (d^2 src)/(dy^2)

* *

This is done when ksize > 1. When ksize == 1, the * Laplacian is computed by filtering the image with the following 3 x * 3 aperture:

* *

vecthreethree 0101(-4)1010

* *

Note:

*
    *
  • An example using the Laplace transformation for edge detection can be * found at opencv_source_code/samples/cpp/laplace.cpp *
* * @param src Source image. * @param dst Destination image of the same size and the same number of channels * as src. * @param ddepth Desired depth of the destination image. * @param ksize Aperture size used to compute the second-derivative filters. See * "getDerivKernels" for details. The size must be positive and odd. * @param scale Optional scale factor for the computed Laplacian values. By * default, no scaling is applied. See "getDerivKernels" for details. * @param delta Optional delta value that is added to the results prior to * storing them in dst. * * @see org.opencv.imgproc.Imgproc.Laplacian * @see org.opencv.imgproc.Imgproc#Scharr * @see org.opencv.imgproc.Imgproc#Sobel */ public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale, double delta) { Laplacian_1(src.nativeObj, dst.nativeObj, ddepth, ksize, scale, delta); return; } /** *

Calculates the Laplacian of an image.

* *

The function calculates the Laplacian of the source image by adding up the * second x and y derivatives calculated using the Sobel operator:

* *

dst = Delta src = (d^2 src)/(dx^2) + (d^2 src)/(dy^2)

* *

This is done when ksize > 1. When ksize == 1, the * Laplacian is computed by filtering the image with the following 3 x * 3 aperture:

* *

vecthreethree 0101(-4)1010

* *

Note:

*
    *
  • An example using the Laplace transformation for edge detection can be * found at opencv_source_code/samples/cpp/laplace.cpp *
* * @param src Source image. * @param dst Destination image of the same size and the same number of channels * as src. * @param ddepth Desired depth of the destination image. * * @see org.opencv.imgproc.Imgproc.Laplacian * @see org.opencv.imgproc.Imgproc#Scharr * @see org.opencv.imgproc.Imgproc#Sobel */ public static void Laplacian(Mat src, Mat dst, int ddepth) { Laplacian_2(src.nativeObj, dst.nativeObj, ddepth); return; } // // C++: double PSNR(Mat src1, Mat src2) // public static double PSNR(Mat src1, Mat src2) { double retVal = PSNR_0(src1.nativeObj, src2.nativeObj); return retVal; } // // C++: void Scharr(Mat src, Mat& dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) // /** *

Calculates the first x- or y- image derivative using Scharr operator.

* *

The function computes the first x- or y- spatial image derivative using the * Scharr operator. The call

* *

Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)

* *

is equivalent to

* *

Sobel(src, dst, ddepth, dx, dy, CV_SCHARR, scale, delta, * borderType).

* * @param src input image. * @param dst output image of the same size and the same number of channels as * src. * @param ddepth output image depth (see "Sobel" for the list of supported * combination of src.depth() and ddepth). * @param dx order of the derivative x. * @param dy order of the derivative y. * @param scale optional scale factor for the computed derivative values; by * default, no scaling is applied (see "getDerivKernels" for details). * @param delta optional delta value that is added to the results prior to * storing them in dst. * @param borderType pixel extrapolation method (see "borderInterpolate" for * details). * * @see org.opencv.imgproc.Imgproc.Scharr * @see org.opencv.core.Core#cartToPolar */ public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale, double delta, int borderType) { Scharr_0(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale, delta, borderType); return; } /** *

Calculates the first x- or y- image derivative using Scharr operator.

* *

The function computes the first x- or y- spatial image derivative using the * Scharr operator. The call

* *

Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)

* *

is equivalent to

* *

Sobel(src, dst, ddepth, dx, dy, CV_SCHARR, scale, delta, * borderType).

* * @param src input image. * @param dst output image of the same size and the same number of channels as * src. * @param ddepth output image depth (see "Sobel" for the list of supported * combination of src.depth() and ddepth). * @param dx order of the derivative x. * @param dy order of the derivative y. * @param scale optional scale factor for the computed derivative values; by * default, no scaling is applied (see "getDerivKernels" for details). * @param delta optional delta value that is added to the results prior to * storing them in dst. * * @see org.opencv.imgproc.Imgproc.Scharr * @see org.opencv.core.Core#cartToPolar */ public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale, double delta) { Scharr_1(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale, delta); return; } /** *

Calculates the first x- or y- image derivative using Scharr operator.

* *

The function computes the first x- or y- spatial image derivative using the * Scharr operator. The call

* *

Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)

* *

is equivalent to

* *

Sobel(src, dst, ddepth, dx, dy, CV_SCHARR, scale, delta, * borderType).

* * @param src input image. * @param dst output image of the same size and the same number of channels as * src. * @param ddepth output image depth (see "Sobel" for the list of supported * combination of src.depth() and ddepth). * @param dx order of the derivative x. * @param dy order of the derivative y. * * @see org.opencv.imgproc.Imgproc.Scharr * @see org.opencv.core.Core#cartToPolar */ public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy) { Scharr_2(src.nativeObj, dst.nativeObj, ddepth, dx, dy); return; } // // C++: void Sobel(Mat src, Mat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) // /** *

Calculates the first, second, third, or mixed image derivatives using an * extended Sobel operator.

* *

In all cases except one, the ksize x<BR>ksize separable kernel * is used to calculate the derivative. When ksize = 1, the 3 x * 1 or 1 x 3 kernel is used (that is, no Gaussian smoothing is * done). ksize = 1 can only be used for the first or the second x- * or y- derivatives.

* *

There is also the special value ksize = CV_SCHARR (-1) that * corresponds to the 3x3 Scharr filter that may give more accurate * results than the 3x3 Sobel. The Scharr aperture is

* *

* |-3 0 3| * |-10 0 10| * |-3 0 3| *

* *

for the x-derivative, or transposed for the y-derivative.

* *

The function calculates an image derivative by convolving the image with the * appropriate kernel:

* *

dst = (d^(xorder+yorder) src)/(dx^(xorder) dy^(yorder))

* *

The Sobel operators combine Gaussian smoothing and differentiation, so the * result is more or less resistant to the noise. Most often, the function is * called with (xorder = 1, yorder = 0, * ksize = 3) or (xorder = 0, yorder = 1, * ksize = 3) to calculate the first x- or y- image derivative. The * first case corresponds to a kernel of:

* *

* |-1 0 1| * |-2 0 2| * |-1 0 1| *

* *

The second case corresponds to a kernel of:

* *

* |-1 -2 -1| * |0 0 0| * |1 2 1| *

* * @param src input image. * @param dst output image of the same size and the same number of channels as * src. * @param ddepth output image depth; the following combinations of * src.depth() and ddepth are supported: *
    *
  • src.depth() = CV_8U, ddepth = * -1/CV_16S/CV_32F/CV_64F *
  • src.depth() = CV_16U/CV_16S, * ddepth = -1/CV_32F/CV_64F *
  • src.depth() = CV_32F, ddepth = * -1/CV_32F/CV_64F *
  • src.depth() = CV_64F, ddepth = * -1/CV_64F *
* *

when ddepth=-1, the destination image will have the same depth * as the source; in the case of 8-bit input images it will result in truncated * derivatives.

* @param dx a dx * @param dy a dy * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. * @param scale optional scale factor for the computed derivative values; by * default, no scaling is applied (see "getDerivKernels" for details). * @param delta optional delta value that is added to the results prior to * storing them in dst. * @param borderType pixel extrapolation method (see "borderInterpolate" for * details). * * @see org.opencv.imgproc.Imgproc.Sobel * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.core.Core#cartToPolar * @see org.opencv.imgproc.Imgproc#sepFilter2D * @see org.opencv.imgproc.Imgproc#Laplacian * @see org.opencv.imgproc.Imgproc#Scharr * @see org.opencv.imgproc.Imgproc#filter2D */ public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType) { Sobel_0(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale, delta, borderType); return; } /** *

Calculates the first, second, third, or mixed image derivatives using an * extended Sobel operator.

* *

In all cases except one, the ksize x<BR>ksize separable kernel * is used to calculate the derivative. When ksize = 1, the 3 x * 1 or 1 x 3 kernel is used (that is, no Gaussian smoothing is * done). ksize = 1 can only be used for the first or the second x- * or y- derivatives.

* *

There is also the special value ksize = CV_SCHARR (-1) that * corresponds to the 3x3 Scharr filter that may give more accurate * results than the 3x3 Sobel. The Scharr aperture is

* *

* |-3 0 3| * |-10 0 10| * |-3 0 3| *

* *

for the x-derivative, or transposed for the y-derivative.

* *

The function calculates an image derivative by convolving the image with the * appropriate kernel:

* *

dst = (d^(xorder+yorder) src)/(dx^(xorder) dy^(yorder))

* *

The Sobel operators combine Gaussian smoothing and differentiation, so the * result is more or less resistant to the noise. Most often, the function is * called with (xorder = 1, yorder = 0, * ksize = 3) or (xorder = 0, yorder = 1, * ksize = 3) to calculate the first x- or y- image derivative. The * first case corresponds to a kernel of:

* *

* |-1 0 1| * |-2 0 2| * |-1 0 1| *

* *

The second case corresponds to a kernel of:

* *

* |-1 -2 -1| * |0 0 0| * |1 2 1| *

* * @param src input image. * @param dst output image of the same size and the same number of channels as * src. * @param ddepth output image depth; the following combinations of * src.depth() and ddepth are supported: *
    *
  • src.depth() = CV_8U, ddepth = * -1/CV_16S/CV_32F/CV_64F *
  • src.depth() = CV_16U/CV_16S, * ddepth = -1/CV_32F/CV_64F *
  • src.depth() = CV_32F, ddepth = * -1/CV_32F/CV_64F *
  • src.depth() = CV_64F, ddepth = * -1/CV_64F *
* *

when ddepth=-1, the destination image will have the same depth * as the source; in the case of 8-bit input images it will result in truncated * derivatives.

* @param dx a dx * @param dy a dy * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. * @param scale optional scale factor for the computed derivative values; by * default, no scaling is applied (see "getDerivKernels" for details). * @param delta optional delta value that is added to the results prior to * storing them in dst. * * @see org.opencv.imgproc.Imgproc.Sobel * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.core.Core#cartToPolar * @see org.opencv.imgproc.Imgproc#sepFilter2D * @see org.opencv.imgproc.Imgproc#Laplacian * @see org.opencv.imgproc.Imgproc#Scharr * @see org.opencv.imgproc.Imgproc#filter2D */ public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta) { Sobel_1(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale, delta); return; } /** *

Calculates the first, second, third, or mixed image derivatives using an * extended Sobel operator.

* *

In all cases except one, the ksize x<BR>ksize separable kernel * is used to calculate the derivative. When ksize = 1, the 3 x * 1 or 1 x 3 kernel is used (that is, no Gaussian smoothing is * done). ksize = 1 can only be used for the first or the second x- * or y- derivatives.

* *

There is also the special value ksize = CV_SCHARR (-1) that * corresponds to the 3x3 Scharr filter that may give more accurate * results than the 3x3 Sobel. The Scharr aperture is

* *

* |-3 0 3| * |-10 0 10| * |-3 0 3| *

* *

for the x-derivative, or transposed for the y-derivative.

* *

The function calculates an image derivative by convolving the image with the * appropriate kernel:

* *

dst = (d^(xorder+yorder) src)/(dx^(xorder) dy^(yorder))

* *

The Sobel operators combine Gaussian smoothing and differentiation, so the * result is more or less resistant to the noise. Most often, the function is * called with (xorder = 1, yorder = 0, * ksize = 3) or (xorder = 0, yorder = 1, * ksize = 3) to calculate the first x- or y- image derivative. The * first case corresponds to a kernel of:

* *

* |-1 0 1| * |-2 0 2| * |-1 0 1| *

* *

The second case corresponds to a kernel of:

* *

* |-1 -2 -1| * |0 0 0| * |1 2 1| *

* * @param src input image. * @param dst output image of the same size and the same number of channels as * src. * @param ddepth output image depth; the following combinations of * src.depth() and ddepth are supported: *
    *
  • src.depth() = CV_8U, ddepth = * -1/CV_16S/CV_32F/CV_64F *
  • src.depth() = CV_16U/CV_16S, * ddepth = -1/CV_32F/CV_64F *
  • src.depth() = CV_32F, ddepth = * -1/CV_32F/CV_64F *
  • src.depth() = CV_64F, ddepth = * -1/CV_64F *
* *

when ddepth=-1, the destination image will have the same depth * as the source; in the case of 8-bit input images it will result in truncated * derivatives.

* @param dx a dx * @param dy a dy * * @see org.opencv.imgproc.Imgproc.Sobel * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.core.Core#cartToPolar * @see org.opencv.imgproc.Imgproc#sepFilter2D * @see org.opencv.imgproc.Imgproc#Laplacian * @see org.opencv.imgproc.Imgproc#Scharr * @see org.opencv.imgproc.Imgproc#filter2D */ public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy) { Sobel_2(src.nativeObj, dst.nativeObj, ddepth, dx, dy); return; } // // C++: void accumulate(Mat src, Mat& dst, Mat mask = Mat()) // /** *

Adds an image to the accumulator.

* *

The function adds src or some of its elements to * dst :

* *

dst(x,y) <- dst(x,y) + src(x,y) if mask(x,y) != 0

* *

The function supports multi-channel images. Each channel is processed * independently.

* *

The functions accumulate* can be used, for example, to collect * statistics of a scene background viewed by a still camera and for the further * foreground-background segmentation.

* * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * @param dst Accumulator image with the same number of channels as input image, * 32-bit or 64-bit floating-point. * @param mask Optional operation mask. * * @see org.opencv.imgproc.Imgproc.accumulate * @see org.opencv.imgproc.Imgproc#accumulateWeighted * @see org.opencv.imgproc.Imgproc#accumulateProduct * @see org.opencv.imgproc.Imgproc#accumulateSquare */ public static void accumulate(Mat src, Mat dst, Mat mask) { accumulate_0(src.nativeObj, dst.nativeObj, mask.nativeObj); return; } /** *

Adds an image to the accumulator.

* *

The function adds src or some of its elements to * dst :

* *

dst(x,y) <- dst(x,y) + src(x,y) if mask(x,y) != 0

* *

The function supports multi-channel images. Each channel is processed * independently.

* *

The functions accumulate* can be used, for example, to collect * statistics of a scene background viewed by a still camera and for the further * foreground-background segmentation.

* * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * @param dst Accumulator image with the same number of channels as input image, * 32-bit or 64-bit floating-point. * * @see org.opencv.imgproc.Imgproc.accumulate * @see org.opencv.imgproc.Imgproc#accumulateWeighted * @see org.opencv.imgproc.Imgproc#accumulateProduct * @see org.opencv.imgproc.Imgproc#accumulateSquare */ public static void accumulate(Mat src, Mat dst) { accumulate_1(src.nativeObj, dst.nativeObj); return; } // // C++: void accumulateProduct(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) // /** *

Adds the per-element product of two input images to the accumulator.

* *

The function adds the product of two images or their selected regions to the * accumulator dst :

* *

dst(x,y) <- dst(x,y) + src1(x,y) * src2(x,y) if mask(x,y) != 0

* *

The function supports multi-channel images. Each channel is processed * independently.

* * @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating * point. * @param src2 Second input image of the same type and the same size as * src1. * @param dst Accumulator with the same number of channels as input images, * 32-bit or 64-bit floating-point. * @param mask Optional operation mask. * * @see org.opencv.imgproc.Imgproc.accumulateProduct * @see org.opencv.imgproc.Imgproc#accumulate * @see org.opencv.imgproc.Imgproc#accumulateWeighted * @see org.opencv.imgproc.Imgproc#accumulateSquare */ public static void accumulateProduct(Mat src1, Mat src2, Mat dst, Mat mask) { accumulateProduct_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); return; } /** *

Adds the per-element product of two input images to the accumulator.

* *

The function adds the product of two images or their selected regions to the * accumulator dst :

* *

dst(x,y) <- dst(x,y) + src1(x,y) * src2(x,y) if mask(x,y) != 0

* *

The function supports multi-channel images. Each channel is processed * independently.

* * @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating * point. * @param src2 Second input image of the same type and the same size as * src1. * @param dst Accumulator with the same number of channels as input images, * 32-bit or 64-bit floating-point. * * @see org.opencv.imgproc.Imgproc.accumulateProduct * @see org.opencv.imgproc.Imgproc#accumulate * @see org.opencv.imgproc.Imgproc#accumulateWeighted * @see org.opencv.imgproc.Imgproc#accumulateSquare */ public static void accumulateProduct(Mat src1, Mat src2, Mat dst) { accumulateProduct_1(src1.nativeObj, src2.nativeObj, dst.nativeObj); return; } // // C++: void accumulateSquare(Mat src, Mat& dst, Mat mask = Mat()) // /** *

Adds the square of a source image to the accumulator.

* *

The function adds the input image src or its selected region, * raised to a power of 2, to the accumulator dst :

* *

dst(x,y) <- dst(x,y) + src(x,y)^2 if mask(x,y) != 0

* *

The function supports multi-channel images. Each channel is processed * independently.

* * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * @param dst Accumulator image with the same number of channels as input image, * 32-bit or 64-bit floating-point. * @param mask Optional operation mask. * * @see org.opencv.imgproc.Imgproc.accumulateSquare * @see org.opencv.imgproc.Imgproc#accumulateWeighted * @see org.opencv.imgproc.Imgproc#accumulateProduct * @see org.opencv.imgproc.Imgproc#accumulateSquare */ public static void accumulateSquare(Mat src, Mat dst, Mat mask) { accumulateSquare_0(src.nativeObj, dst.nativeObj, mask.nativeObj); return; } /** *

Adds the square of a source image to the accumulator.

* *

The function adds the input image src or its selected region, * raised to a power of 2, to the accumulator dst :

* *

dst(x,y) <- dst(x,y) + src(x,y)^2 if mask(x,y) != 0

* *

The function supports multi-channel images. Each channel is processed * independently.

* * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * @param dst Accumulator image with the same number of channels as input image, * 32-bit or 64-bit floating-point. * * @see org.opencv.imgproc.Imgproc.accumulateSquare * @see org.opencv.imgproc.Imgproc#accumulateWeighted * @see org.opencv.imgproc.Imgproc#accumulateProduct * @see org.opencv.imgproc.Imgproc#accumulateSquare */ public static void accumulateSquare(Mat src, Mat dst) { accumulateSquare_1(src.nativeObj, dst.nativeObj); return; } // // C++: void accumulateWeighted(Mat src, Mat& dst, double alpha, Mat mask = Mat()) // /** *

Updates a running average.

* *

The function calculates the weighted sum of the input image src * and the accumulator dst so that dst becomes a * running average of a frame sequence:

* *

dst(x,y) <- (1- alpha) * dst(x,y) + alpha * src(x,y) if mask(x,y) != * 0

* *

That is, alpha regulates the update speed (how fast the * accumulator "forgets" about earlier images). * The function supports multi-channel images. Each channel is processed * independently.

* * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * @param dst Accumulator image with the same number of channels as input image, * 32-bit or 64-bit floating-point. * @param alpha Weight of the input image. * @param mask Optional operation mask. * * @see org.opencv.imgproc.Imgproc.accumulateWeighted * @see org.opencv.imgproc.Imgproc#accumulate * @see org.opencv.imgproc.Imgproc#accumulateProduct * @see org.opencv.imgproc.Imgproc#accumulateSquare */ public static void accumulateWeighted(Mat src, Mat dst, double alpha, Mat mask) { accumulateWeighted_0(src.nativeObj, dst.nativeObj, alpha, mask.nativeObj); return; } /** *

Updates a running average.

* *

The function calculates the weighted sum of the input image src * and the accumulator dst so that dst becomes a * running average of a frame sequence:

* *

dst(x,y) <- (1- alpha) * dst(x,y) + alpha * src(x,y) if mask(x,y) != * 0

* *

That is, alpha regulates the update speed (how fast the * accumulator "forgets" about earlier images). * The function supports multi-channel images. Each channel is processed * independently.

* * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * @param dst Accumulator image with the same number of channels as input image, * 32-bit or 64-bit floating-point. * @param alpha Weight of the input image. * * @see org.opencv.imgproc.Imgproc.accumulateWeighted * @see org.opencv.imgproc.Imgproc#accumulate * @see org.opencv.imgproc.Imgproc#accumulateProduct * @see org.opencv.imgproc.Imgproc#accumulateSquare */ public static void accumulateWeighted(Mat src, Mat dst, double alpha) { accumulateWeighted_1(src.nativeObj, dst.nativeObj, alpha); return; } // // C++: void adaptiveBilateralFilter(Mat src, Mat& dst, Size ksize, double sigmaSpace, double maxSigmaColor = 20.0, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT) // /** *

Applies the adaptive bilateral filter to an image.

* *

A main part of our strategy will be to load each raw pixel once, and reuse it * to calculate all pixels in the output (filtered) image that need this pixel * value. The math of the filter is that of the usual bilateral filter, except * that the sigma color is calculated in the neighborhood, and clamped by the * optional input value.

* * @param src The source image * @param dst The destination image; will have the same size and the same type * as src * @param ksize The kernel size. This is the neighborhood where the local * variance will be calculated, and where pixels will contribute (in a weighted * manner). * @param sigmaSpace Filter sigma in the coordinate space. Larger value of the * parameter means that farther pixels will influence each other (as long as * their colors are close enough; see sigmaColor). Then d>0, it specifies the * neighborhood size regardless of sigmaSpace, otherwise d is proportional to * sigmaSpace. * @param maxSigmaColor Maximum allowed sigma color (will clamp the value * calculated in the ksize neighborhood. Larger value of the parameter means * that more dissimilar pixels will influence each other (as long as their * colors are close enough; see sigmaColor). Then d>0, it specifies the * neighborhood size regardless of sigmaSpace, otherwise d is proportional to * sigmaSpace. * @param anchor a anchor * @param borderType Pixel extrapolation method. * * @see org.opencv.imgproc.Imgproc.adaptiveBilateralFilter */ public static void adaptiveBilateralFilter(Mat src, Mat dst, Size ksize, double sigmaSpace, double maxSigmaColor, Point anchor, int borderType) { adaptiveBilateralFilter_0(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaSpace, maxSigmaColor, anchor.x, anchor.y, borderType); return; } /** *

Applies the adaptive bilateral filter to an image.

* *

A main part of our strategy will be to load each raw pixel once, and reuse it * to calculate all pixels in the output (filtered) image that need this pixel * value. The math of the filter is that of the usual bilateral filter, except * that the sigma color is calculated in the neighborhood, and clamped by the * optional input value.

* * @param src The source image * @param dst The destination image; will have the same size and the same type * as src * @param ksize The kernel size. This is the neighborhood where the local * variance will be calculated, and where pixels will contribute (in a weighted * manner). * @param sigmaSpace Filter sigma in the coordinate space. Larger value of the * parameter means that farther pixels will influence each other (as long as * their colors are close enough; see sigmaColor). Then d>0, it specifies the * neighborhood size regardless of sigmaSpace, otherwise d is proportional to * sigmaSpace. * @param maxSigmaColor Maximum allowed sigma color (will clamp the value * calculated in the ksize neighborhood. Larger value of the parameter means * that more dissimilar pixels will influence each other (as long as their * colors are close enough; see sigmaColor). Then d>0, it specifies the * neighborhood size regardless of sigmaSpace, otherwise d is proportional to * sigmaSpace. * @param anchor a anchor * * @see org.opencv.imgproc.Imgproc.adaptiveBilateralFilter */ public static void adaptiveBilateralFilter(Mat src, Mat dst, Size ksize, double sigmaSpace, double maxSigmaColor, Point anchor) { adaptiveBilateralFilter_1(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaSpace, maxSigmaColor, anchor.x, anchor.y); return; } /** *

Applies the adaptive bilateral filter to an image.

* *

A main part of our strategy will be to load each raw pixel once, and reuse it * to calculate all pixels in the output (filtered) image that need this pixel * value. The math of the filter is that of the usual bilateral filter, except * that the sigma color is calculated in the neighborhood, and clamped by the * optional input value.

* * @param src The source image * @param dst The destination image; will have the same size and the same type * as src * @param ksize The kernel size. This is the neighborhood where the local * variance will be calculated, and where pixels will contribute (in a weighted * manner). * @param sigmaSpace Filter sigma in the coordinate space. Larger value of the * parameter means that farther pixels will influence each other (as long as * their colors are close enough; see sigmaColor). Then d>0, it specifies the * neighborhood size regardless of sigmaSpace, otherwise d is proportional to * sigmaSpace. * * @see org.opencv.imgproc.Imgproc.adaptiveBilateralFilter */ public static void adaptiveBilateralFilter(Mat src, Mat dst, Size ksize, double sigmaSpace) { adaptiveBilateralFilter_2(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaSpace); return; } // // C++: void adaptiveThreshold(Mat src, Mat& dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) // /** *

Applies an adaptive threshold to an array.

* *

The function transforms a grayscale image to a binary image according to the * formulae:

*
    *
  • THRESH_BINARY *
* *

dst(x,y) = maxValue if src(x,y) > T(x,y); 0 otherwise

* *
    *
  • THRESH_BINARY_INV *
* *

dst(x,y) = 0 if src(x,y) > T(x,y); maxValue otherwise

* *

where T(x,y) is a threshold calculated individually for each pixel.

*
    *
  • For the method ADAPTIVE_THRESH_MEAN_C, the threshold * value T(x,y) is a mean of the blockSize x blockSize * neighborhood of (x, y) minus C. *
  • For the method ADAPTIVE_THRESH_GAUSSIAN_C, the threshold * value T(x, y) is a weighted sum (cross-correlation with a Gaussian * window) of the blockSize x blockSize neighborhood of (x, y) * minus C. The default sigma (standard deviation) is used for the * specified blockSize. See "getGaussianKernel". *
* *

The function can process the image in-place.

* * @param src Source 8-bit single-channel image. * @param dst Destination image of the same size and the same type as * src. * @param maxValue Non-zero value assigned to the pixels for which the condition * is satisfied. See the details below. * @param adaptiveMethod Adaptive thresholding algorithm to use, * ADAPTIVE_THRESH_MEAN_C or ADAPTIVE_THRESH_GAUSSIAN_C. * See the details below. * @param thresholdType Thresholding type that must be either THRESH_BINARY * or THRESH_BINARY_INV. * @param blockSize Size of a pixel neighborhood that is used to calculate a * threshold value for the pixel: 3, 5, 7, and so on. * @param C Constant subtracted from the mean or weighted mean (see the details * below). Normally, it is positive but may be zero or negative as well. * * @see org.opencv.imgproc.Imgproc.adaptiveThreshold * @see org.opencv.imgproc.Imgproc#threshold * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#blur */ public static void adaptiveThreshold(Mat src, Mat dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) { adaptiveThreshold_0(src.nativeObj, dst.nativeObj, maxValue, adaptiveMethod, thresholdType, blockSize, C); return; } // // C++: void approxPolyDP(vector_Point2f curve, vector_Point2f& approxCurve, double epsilon, bool closed) // /** *

Approximates a polygonal curve(s) with the specified precision.

* *

The functions approxPolyDP approximate a curve or a polygon with * another curve/polygon with less vertices so that the distance between them is * less or equal to the specified precision. It uses the Douglas-Peucker * algorithm http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm

* *

See https://github.com/Itseez/opencv/tree/master/samples/cpp/contours2.cpp * for the function usage model.

* * @param curve Input vector of a 2D point stored in: *
    *
  • std.vector or Mat (C++ interface) *
  • Nx2 numpy array (Python interface) *
  • CvSeq or CvMat" (C interface) *
* @param approxCurve Result of the approximation. The type should match the * type of the input curve. In case of C interface the approximated curve is * stored in the memory storage and pointer to it is returned. * @param epsilon Parameter specifying the approximation accuracy. This is the * maximum distance between the original curve and its approximation. * @param closed If true, the approximated curve is closed (its first and last * vertices are connected). Otherwise, it is not closed. * * @see org.opencv.imgproc.Imgproc.approxPolyDP */ public static void approxPolyDP(MatOfPoint2f curve, MatOfPoint2f approxCurve, double epsilon, boolean closed) { Mat curve_mat = curve; Mat approxCurve_mat = approxCurve; approxPolyDP_0(curve_mat.nativeObj, approxCurve_mat.nativeObj, epsilon, closed); return; } // // C++: double arcLength(vector_Point2f curve, bool closed) // /** *

Calculates a contour perimeter or a curve length.

* *

The function computes a curve length or a closed contour perimeter.

* * @param curve Input vector of 2D points, stored in std.vector or * Mat. * @param closed Flag indicating whether the curve is closed or not. * * @see org.opencv.imgproc.Imgproc.arcLength */ public static double arcLength(MatOfPoint2f curve, boolean closed) { Mat curve_mat = curve; double retVal = arcLength_0(curve_mat.nativeObj, closed); return retVal; } // // C++: void bilateralFilter(Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT) // /** *

Applies the bilateral filter to an image.

* *

The function applies bilateral filtering to the input image, as described in * http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html * bilateralFilter can reduce unwanted noise very well while * keeping edges fairly sharp. However, it is very slow compared to most * filters.

*
    *
  • Sigma values*: For simplicity, you can set the 2 sigma values to be the * same. If they are small (< 10), the filter will not have much effect, whereas * if they are large (> 150), they will have a very strong effect, making the * image look "cartoonish". *
  • Filter size*: Large filters (d > 5) are very slow, so it is recommended * to use d=5 for real-time applications, and perhaps d=9 for offline * applications that need heavy noise filtering. *
* *

This filter does not work inplace.

* * @param src Source 8-bit or floating-point, 1-channel or 3-channel image. * @param dst Destination image of the same size and type as src. * @param d Diameter of each pixel neighborhood that is used during filtering. * If it is non-positive, it is computed from sigmaSpace. * @param sigmaColor Filter sigma in the color space. A larger value of the * parameter means that farther colors within the pixel neighborhood (see * sigmaSpace) will be mixed together, resulting in larger areas of * semi-equal color. * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the * parameter means that farther pixels will influence each other as long as * their colors are close enough (see sigmaColor). When * d>0, it specifies the neighborhood size regardless of * sigmaSpace. Otherwise, d is proportional to * sigmaSpace. * @param borderType a borderType * * @see org.opencv.imgproc.Imgproc.bilateralFilter */ public static void bilateralFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace, int borderType) { bilateralFilter_0(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace, borderType); return; } /** *

Applies the bilateral filter to an image.

* *

The function applies bilateral filtering to the input image, as described in * http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html * bilateralFilter can reduce unwanted noise very well while * keeping edges fairly sharp. However, it is very slow compared to most * filters.

*
    *
  • Sigma values*: For simplicity, you can set the 2 sigma values to be the * same. If they are small (< 10), the filter will not have much effect, whereas * if they are large (> 150), they will have a very strong effect, making the * image look "cartoonish". *
  • Filter size*: Large filters (d > 5) are very slow, so it is recommended * to use d=5 for real-time applications, and perhaps d=9 for offline * applications that need heavy noise filtering. *
* *

This filter does not work inplace.

* * @param src Source 8-bit or floating-point, 1-channel or 3-channel image. * @param dst Destination image of the same size and type as src. * @param d Diameter of each pixel neighborhood that is used during filtering. * If it is non-positive, it is computed from sigmaSpace. * @param sigmaColor Filter sigma in the color space. A larger value of the * parameter means that farther colors within the pixel neighborhood (see * sigmaSpace) will be mixed together, resulting in larger areas of * semi-equal color. * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the * parameter means that farther pixels will influence each other as long as * their colors are close enough (see sigmaColor). When * d>0, it specifies the neighborhood size regardless of * sigmaSpace. Otherwise, d is proportional to * sigmaSpace. * * @see org.opencv.imgproc.Imgproc.bilateralFilter */ public static void bilateralFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace) { bilateralFilter_1(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace); return; } // // C++: void blur(Mat src, Mat& dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT) // /** *

Blurs an image using the normalized box filter.

* *

The function smoothes an image using the kernel:

* *

K = 1/(ksize.width*ksize.height) 1 1 1 *s 1 1 * 1 1 1 *s 1 1.................. * 1 1 1 *s 1 1 *

* *

The call blur(src, dst, ksize, anchor, borderType) is equivalent * to boxFilter(src, dst, src.type(), anchor, true, borderType).

* * @param src input image; it can have any number of channels, which are * processed independently, but the depth should be CV_8U, * CV_16U, CV_16S, CV_32F or * CV_64F. * @param dst output image of the same size and type as src. * @param ksize blurring kernel size. * @param anchor anchor point; default value Point(-1,-1) means * that the anchor is at the kernel center. * @param borderType border mode used to extrapolate pixels outside of the * image. * * @see org.opencv.imgproc.Imgproc.blur * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#bilateralFilter * @see org.opencv.imgproc.Imgproc#medianBlur */ public static void blur(Mat src, Mat dst, Size ksize, Point anchor, int borderType) { blur_0(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, anchor.x, anchor.y, borderType); return; } /** *

Blurs an image using the normalized box filter.

* *

The function smoothes an image using the kernel:

* *

K = 1/(ksize.width*ksize.height) 1 1 1 *s 1 1 * 1 1 1 *s 1 1.................. * 1 1 1 *s 1 1 *

* *

The call blur(src, dst, ksize, anchor, borderType) is equivalent * to boxFilter(src, dst, src.type(), anchor, true, borderType).

* * @param src input image; it can have any number of channels, which are * processed independently, but the depth should be CV_8U, * CV_16U, CV_16S, CV_32F or * CV_64F. * @param dst output image of the same size and type as src. * @param ksize blurring kernel size. * @param anchor anchor point; default value Point(-1,-1) means * that the anchor is at the kernel center. * * @see org.opencv.imgproc.Imgproc.blur * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#bilateralFilter * @see org.opencv.imgproc.Imgproc#medianBlur */ public static void blur(Mat src, Mat dst, Size ksize, Point anchor) { blur_1(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, anchor.x, anchor.y); return; } /** *

Blurs an image using the normalized box filter.

* *

The function smoothes an image using the kernel:

* *

K = 1/(ksize.width*ksize.height) 1 1 1 *s 1 1 * 1 1 1 *s 1 1.................. * 1 1 1 *s 1 1 *

* *

The call blur(src, dst, ksize, anchor, borderType) is equivalent * to boxFilter(src, dst, src.type(), anchor, true, borderType).

* * @param src input image; it can have any number of channels, which are * processed independently, but the depth should be CV_8U, * CV_16U, CV_16S, CV_32F or * CV_64F. * @param dst output image of the same size and type as src. * @param ksize blurring kernel size. * * @see org.opencv.imgproc.Imgproc.blur * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#bilateralFilter * @see org.opencv.imgproc.Imgproc#medianBlur */ public static void blur(Mat src, Mat dst, Size ksize) { blur_2(src.nativeObj, dst.nativeObj, ksize.width, ksize.height); return; } // // C++: int borderInterpolate(int p, int len, int borderType) // /** *

Computes the source location of an extrapolated pixel.

* *

The function computes and returns the coordinate of a donor pixel * corresponding to the specified extrapolated pixel when using the specified * extrapolation border mode. For example, if you use BORDER_WRAP * mode in the horizontal direction, BORDER_REFLECT_101 in the * vertical direction and want to compute value of the "virtual" pixel * Point(-5, 100) in a floating-point image img, it * looks like:

* *

// C++ code:

* *

float val = img.at(borderInterpolate(100, img.rows, BORDER_REFLECT_101),

* *

borderInterpolate(-5, img.cols, BORDER_WRAP));

* *

Normally, the function is not called directly. It is used inside

* *

"FilterEngine" and "copyMakeBorder" to compute tables for quick * extrapolation.

* * @param p 0-based coordinate of the extrapolated pixel along one of the axes, * likely <0 or >= len. * @param len Length of the array along the corresponding axis. * @param borderType Border type, one of the BORDER_*, except for * BORDER_TRANSPARENT and BORDER_ISOLATED. When * borderType==BORDER_CONSTANT, the function always returns -1, * regardless of p and len. * * @see org.opencv.imgproc.Imgproc.borderInterpolate * @see org.opencv.imgproc.Imgproc#copyMakeBorder */ public static int borderInterpolate(int p, int len, int borderType) { int retVal = borderInterpolate_0(p, len, borderType); return retVal; } // // C++: Rect boundingRect(vector_Point points) // /** *

Calculates the up-right bounding rectangle of a point set.

* *

The function calculates and returns the minimal up-right bounding rectangle * for the specified point set.

* * @param points Input 2D point set, stored in std.vector or * Mat. * * @see org.opencv.imgproc.Imgproc.boundingRect */ public static Rect boundingRect(MatOfPoint points) { Mat points_mat = points; Rect retVal = new Rect(boundingRect_0(points_mat.nativeObj)); return retVal; } // // C++: void boxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), bool normalize = true, int borderType = BORDER_DEFAULT) // /** *

Blurs an image using the box filter.

* *

The function smoothes an image using the kernel:

* *

K = alpha 1 1 1 *s 1 1 * 1 1 1 *s 1 1.................. * 1 1 1 *s 1 1

* *

where

* *

alpha = 1/(ksize.width*ksize.height) when normalize=true; 1 * otherwise

* *

Unnormalized box filter is useful for computing various integral * characteristics over each pixel neighborhood, such as covariance matrices of * image derivatives (used in dense optical flow algorithms, and so on). If you * need to compute pixel sums over variable-size windows, use "integral".

* * @param src input image. * @param dst output image of the same size and type as src. * @param ddepth the output image depth (-1 to use src.depth()). * @param ksize blurring kernel size. * @param anchor anchor point; default value Point(-1,-1) means * that the anchor is at the kernel center. * @param normalize flag, specifying whether the kernel is normalized by its * area or not. * @param borderType border mode used to extrapolate pixels outside of the * image. * * @see org.opencv.imgproc.Imgproc.boxFilter * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#medianBlur * @see org.opencv.imgproc.Imgproc#integral * @see org.opencv.imgproc.Imgproc#bilateralFilter * @see org.opencv.imgproc.Imgproc#blur */ public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, boolean normalize, int borderType) { boxFilter_0(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize, borderType); return; } /** *

Blurs an image using the box filter.

* *

The function smoothes an image using the kernel:

* *

K = alpha 1 1 1 *s 1 1 * 1 1 1 *s 1 1.................. * 1 1 1 *s 1 1

* *

where

* *

alpha = 1/(ksize.width*ksize.height) when normalize=true; 1 * otherwise

* *

Unnormalized box filter is useful for computing various integral * characteristics over each pixel neighborhood, such as covariance matrices of * image derivatives (used in dense optical flow algorithms, and so on). If you * need to compute pixel sums over variable-size windows, use "integral".

* * @param src input image. * @param dst output image of the same size and type as src. * @param ddepth the output image depth (-1 to use src.depth()). * @param ksize blurring kernel size. * @param anchor anchor point; default value Point(-1,-1) means * that the anchor is at the kernel center. * @param normalize flag, specifying whether the kernel is normalized by its * area or not. * * @see org.opencv.imgproc.Imgproc.boxFilter * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#medianBlur * @see org.opencv.imgproc.Imgproc#integral * @see org.opencv.imgproc.Imgproc#bilateralFilter * @see org.opencv.imgproc.Imgproc#blur */ public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, boolean normalize) { boxFilter_1(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize); return; } /** *

Blurs an image using the box filter.

* *

The function smoothes an image using the kernel:

* *

K = alpha 1 1 1 *s 1 1 * 1 1 1 *s 1 1.................. * 1 1 1 *s 1 1

* *

where

* *

alpha = 1/(ksize.width*ksize.height) when normalize=true; 1 * otherwise

* *

Unnormalized box filter is useful for computing various integral * characteristics over each pixel neighborhood, such as covariance matrices of * image derivatives (used in dense optical flow algorithms, and so on). If you * need to compute pixel sums over variable-size windows, use "integral".

* * @param src input image. * @param dst output image of the same size and type as src. * @param ddepth the output image depth (-1 to use src.depth()). * @param ksize blurring kernel size. * * @see org.opencv.imgproc.Imgproc.boxFilter * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#medianBlur * @see org.opencv.imgproc.Imgproc#integral * @see org.opencv.imgproc.Imgproc#bilateralFilter * @see org.opencv.imgproc.Imgproc#blur */ public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize) { boxFilter_2(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height); return; } // // C++: void calcBackProject(vector_Mat images, vector_int channels, Mat hist, Mat& dst, vector_float ranges, double scale) // /** *

Calculates the back projection of a histogram.

* *

The functions calcBackProject calculate the back project of the * histogram. That is, similarly to calcHist, at each location * (x, y) the function collects the values from the selected * channels in the input images and finds the corresponding histogram bin. But * instead of incrementing it, the function reads the bin value, scales it by * scale, and stores in backProject(x,y). In terms of * statistics, the function computes probability of each element value in * respect with the empirical probability distribution represented by the * histogram. See how, for example, you can find and track a bright-colored * object in a scene:

*
    *
  • Before tracking, show the object to the camera so that it covers * almost the whole frame. Calculate a hue histogram. The histogram may have * strong maximums, corresponding to the dominant colors in the object. *
  • When tracking, calculate a back projection of a hue plane of each * input video frame using that pre-computed histogram. Threshold the back * projection to suppress weak colors. It may also make sense to suppress pixels * with non-sufficient color saturation and too dark or too bright pixels. *
  • Find connected components in the resulting picture and choose, for * example, the largest component. *
* *

This is an approximate algorithm of the "CamShift" color object tracker.

* * @param images Source arrays. They all should have the same depth, * CV_8U or CV_32F, and the same size. Each of them * can have an arbitrary number of channels. * @param channels The list of channels used to compute the back projection. The * number of channels must match the histogram dimensionality. The first array * channels are numerated from 0 to images[0].channels()-1, the * second array channels are counted from images[0].channels() to * images[0].channels() + images[1].channels()-1, and so on. * @param hist Input histogram that can be dense or sparse. * @param dst a dst * @param ranges Array of arrays of the histogram bin boundaries in each * dimension. See "calcHist". * @param scale Optional scale factor for the output back projection. * * @see org.opencv.imgproc.Imgproc.calcBackProject * @see org.opencv.imgproc.Imgproc#calcHist */ public static void calcBackProject(List images, MatOfInt channels, Mat hist, Mat dst, MatOfFloat ranges, double scale) { Mat images_mat = Converters.vector_Mat_to_Mat(images); Mat channels_mat = channels; Mat ranges_mat = ranges; calcBackProject_0(images_mat.nativeObj, channels_mat.nativeObj, hist.nativeObj, dst.nativeObj, ranges_mat.nativeObj, scale); return; } // // C++: void calcHist(vector_Mat images, vector_int channels, Mat mask, Mat& hist, vector_int histSize, vector_float ranges, bool accumulate = false) // /** *

Calculates a histogram of a set of arrays.

* *

The functions calcHist calculate the histogram of one or more * arrays. The elements of a tuple used to increment a histogram bin are taken * from the correspondinginput arrays at the same location. The sample below * shows how to compute a 2D Hue-Saturation histogram for a color image. *

* *

// C++ code:

* *

#include

* *

#include

* *

using namespace cv;

* *

int main(int argc, char argv)

* * *

Mat src, hsv;

* *

if(argc != 2 || !(src=imread(argv[1], 1)).data)

* *

return -1;

* *

cvtColor(src, hsv, CV_BGR2HSV);

* *

// Quantize the hue to 30 levels

* *

// and the saturation to 32 levels

* *

int hbins = 30, sbins = 32;

* *

int histSize[] = {hbins, sbins};

* *

// hue varies from 0 to 179, see cvtColor

* *

float hranges[] = { 0, 180 };

* *

// saturation varies from 0 (black-gray-white) to

* *

// 255 (pure spectrum color)

* *

float sranges[] = { 0, 256 };

* *

const float* ranges[] = { hranges, sranges };

* *

MatND hist;

* *

// we compute the histogram from the 0-th and 1-st channels

* *

int channels[] = {0, 1};

* *

calcHist(&hsv, 1, channels, Mat(), // do not use mask

* *

hist, 2, histSize, ranges,

* *

true, // the histogram is uniform

* *

false);

* *

double maxVal=0;

* *

minMaxLoc(hist, 0, &maxVal, 0, 0);

* *

int scale = 10;

* *

Mat histImg = Mat.zeros(sbins*scale, hbins*10, CV_8UC3);

* *

for(int h = 0; h < hbins; h++)

* *

for(int s = 0; s < sbins; s++)

* * *

float binVal = hist.at(h, s);

* *

int intensity = cvRound(binVal*255/maxVal);

* *

rectangle(histImg, Point(h*scale, s*scale),

* *

Point((h+1)*scale - 1, (s+1)*scale - 1),

* *

Scalar.all(intensity),

* *

CV_FILLED);

* * *

namedWindow("Source", 1);

* *

imshow("Source", src);

* *

namedWindow("H-S Histogram", 1);

* *

imshow("H-S Histogram", histImg);

* *

waitKey();

* * *

Note:

*
    *
  • An example for creating histograms of an image can be found at * opencv_source_code/samples/cpp/demhist.cpp *
  • (Python) An example for creating color histograms can be found at * opencv_source/samples/python2/color_histogram.py *
  • (Python) An example illustrating RGB and grayscale histogram plotting * can be found at opencv_source/samples/python2/hist.py *
* * @param images Source arrays. They all should have the same depth, * CV_8U or CV_32F, and the same size. Each of them * can have an arbitrary number of channels. * @param channels List of the dims channels used to compute the * histogram. The first array channels are numerated from 0 to images[0].channels()-1, * the second array channels are counted from images[0].channels() * to images[0].channels() + images[1].channels()-1, and so on. * @param mask Optional mask. If the matrix is not empty, it must be an 8-bit * array of the same size as images[i]. The non-zero mask elements * mark the array elements counted in the histogram. * @param hist Output histogram, which is a dense or sparse dims * -dimensional array. * @param histSize Array of histogram sizes in each dimension. * @param ranges Array of the dims arrays of the histogram bin * boundaries in each dimension. When the histogram is uniform (uniform * =true), then for each dimension i it is enough to specify the * lower (inclusive) boundary L_0 of the 0-th histogram bin and the * upper (exclusive) boundary U_(histSize[i]-1) for the last histogram * bin histSize[i]-1. That is, in case of a uniform histogram each * of ranges[i] is an array of 2 elements. When the histogram is * not uniform (uniform=false), then each of ranges[i] * contains histSize[i]+1 elements: L_0, U_0=L_1, U_1=L_2,..., * U_(histSize[i]-2)=L_(histSize[i]-1), U_(histSize[i]-1). The array * elements, that are not between L_0 and U_(histSize[i]-1), * are not counted in the histogram. * @param accumulate Accumulation flag. If it is set, the histogram is not * cleared in the beginning when it is allocated. This feature enables you to * compute a single histogram from several sets of arrays, or to update the * histogram in time. * * @see org.opencv.imgproc.Imgproc.calcHist */ public static void calcHist(List images, MatOfInt channels, Mat mask, Mat hist, MatOfInt histSize, MatOfFloat ranges, boolean accumulate) { Mat images_mat = Converters.vector_Mat_to_Mat(images); Mat channels_mat = channels; Mat histSize_mat = histSize; Mat ranges_mat = ranges; calcHist_0(images_mat.nativeObj, channels_mat.nativeObj, mask.nativeObj, hist.nativeObj, histSize_mat.nativeObj, ranges_mat.nativeObj, accumulate); return; } /** *

Calculates a histogram of a set of arrays.

* *

The functions calcHist calculate the histogram of one or more * arrays. The elements of a tuple used to increment a histogram bin are taken * from the correspondinginput arrays at the same location. The sample below * shows how to compute a 2D Hue-Saturation histogram for a color image. *

* *

// C++ code:

* *

#include

* *

#include

* *

using namespace cv;

* *

int main(int argc, char argv)

* * *

Mat src, hsv;

* *

if(argc != 2 || !(src=imread(argv[1], 1)).data)

* *

return -1;

* *

cvtColor(src, hsv, CV_BGR2HSV);

* *

// Quantize the hue to 30 levels

* *

// and the saturation to 32 levels

* *

int hbins = 30, sbins = 32;

* *

int histSize[] = {hbins, sbins};

* *

// hue varies from 0 to 179, see cvtColor

* *

float hranges[] = { 0, 180 };

* *

// saturation varies from 0 (black-gray-white) to

* *

// 255 (pure spectrum color)

* *

float sranges[] = { 0, 256 };

* *

const float* ranges[] = { hranges, sranges };

* *

MatND hist;

* *

// we compute the histogram from the 0-th and 1-st channels

* *

int channels[] = {0, 1};

* *

calcHist(&hsv, 1, channels, Mat(), // do not use mask

* *

hist, 2, histSize, ranges,

* *

true, // the histogram is uniform

* *

false);

* *

double maxVal=0;

* *

minMaxLoc(hist, 0, &maxVal, 0, 0);

* *

int scale = 10;

* *

Mat histImg = Mat.zeros(sbins*scale, hbins*10, CV_8UC3);

* *

for(int h = 0; h < hbins; h++)

* *

for(int s = 0; s < sbins; s++)

* * *

float binVal = hist.at(h, s);

* *

int intensity = cvRound(binVal*255/maxVal);

* *

rectangle(histImg, Point(h*scale, s*scale),

* *

Point((h+1)*scale - 1, (s+1)*scale - 1),

* *

Scalar.all(intensity),

* *

CV_FILLED);

* * *

namedWindow("Source", 1);

* *

imshow("Source", src);

* *

namedWindow("H-S Histogram", 1);

* *

imshow("H-S Histogram", histImg);

* *

waitKey();

* * *

Note:

*
    *
  • An example for creating histograms of an image can be found at * opencv_source_code/samples/cpp/demhist.cpp *
  • (Python) An example for creating color histograms can be found at * opencv_source/samples/python2/color_histogram.py *
  • (Python) An example illustrating RGB and grayscale histogram plotting * can be found at opencv_source/samples/python2/hist.py *
* * @param images Source arrays. They all should have the same depth, * CV_8U or CV_32F, and the same size. Each of them * can have an arbitrary number of channels. * @param channels List of the dims channels used to compute the * histogram. The first array channels are numerated from 0 to images[0].channels()-1, * the second array channels are counted from images[0].channels() * to images[0].channels() + images[1].channels()-1, and so on. * @param mask Optional mask. If the matrix is not empty, it must be an 8-bit * array of the same size as images[i]. The non-zero mask elements * mark the array elements counted in the histogram. * @param hist Output histogram, which is a dense or sparse dims * -dimensional array. * @param histSize Array of histogram sizes in each dimension. * @param ranges Array of the dims arrays of the histogram bin * boundaries in each dimension. When the histogram is uniform (uniform * =true), then for each dimension i it is enough to specify the * lower (inclusive) boundary L_0 of the 0-th histogram bin and the * upper (exclusive) boundary U_(histSize[i]-1) for the last histogram * bin histSize[i]-1. That is, in case of a uniform histogram each * of ranges[i] is an array of 2 elements. When the histogram is * not uniform (uniform=false), then each of ranges[i] * contains histSize[i]+1 elements: L_0, U_0=L_1, U_1=L_2,..., * U_(histSize[i]-2)=L_(histSize[i]-1), U_(histSize[i]-1). The array * elements, that are not between L_0 and U_(histSize[i]-1), * are not counted in the histogram. * * @see org.opencv.imgproc.Imgproc.calcHist */ public static void calcHist(List images, MatOfInt channels, Mat mask, Mat hist, MatOfInt histSize, MatOfFloat ranges) { Mat images_mat = Converters.vector_Mat_to_Mat(images); Mat channels_mat = channels; Mat histSize_mat = histSize; Mat ranges_mat = ranges; calcHist_1(images_mat.nativeObj, channels_mat.nativeObj, mask.nativeObj, hist.nativeObj, histSize_mat.nativeObj, ranges_mat.nativeObj); return; } // // C++: double compareHist(Mat H1, Mat H2, int method) // /** *

Compares two histograms.

* *

The functions compareHist compare two dense or two sparse * histograms using the specified method:

*
    *
  • Correlation (method=CV_COMP_CORREL) *
* *

d(H_1,H_2) = (sum_I(H_1(I) - H_1")(H_2(I) - H_2"))/(sqrt(sum_I(H_1(I) - * H_1")^2 sum_I(H_2(I) - H_2")^2))

* *

where

* *

H_k" = 1/(N) sum _J H_k(J)

* *

and N is a total number of histogram bins.

*
    *
  • Chi-Square (method=CV_COMP_CHISQR) *
* *

d(H_1,H_2) = sum _I((H_1(I)-H_2(I))^2)/(H_1(I))

* *
    *
  • Intersection (method=CV_COMP_INTERSECT) *
* *

d(H_1,H_2) = sum _I min(H_1(I), H_2(I))

* *
    *
  • Bhattacharyya distance (method=CV_COMP_BHATTACHARYYA or * method=CV_COMP_HELLINGER). In fact, OpenCV computes Hellinger * distance, which is related to Bhattacharyya coefficient. *
* *

d(H_1,H_2) = sqrt(1 - frac(1)(sqrt(H_1" H_2" N^2)) sum_I sqrt(H_1(I) * * H_2(I)))

* *

The function returns d(H_1, H_2).

* *

While the function works well with 1-, 2-, 3-dimensional dense histograms, it * may not be suitable for high-dimensional sparse histograms. In such * histograms, because of aliasing and sampling problems, the coordinates of * non-zero histogram bins can slightly shift. To compare such histograms or * more general sparse configurations of weighted points, consider using the * "EMD" function.

* * @param H1 First compared histogram. * @param H2 Second compared histogram of the same size as H1. * @param method Comparison method that could be one of the following: *
    *
  • CV_COMP_CORREL Correlation *
  • CV_COMP_CHISQR Chi-Square *
  • CV_COMP_INTERSECT Intersection *
  • CV_COMP_BHATTACHARYYA Bhattacharyya distance *
  • CV_COMP_HELLINGER Synonym for CV_COMP_BHATTACHARYYA *
* * @see org.opencv.imgproc.Imgproc.compareHist */ public static double compareHist(Mat H1, Mat H2, int method) { double retVal = compareHist_0(H1.nativeObj, H2.nativeObj, method); return retVal; } // // C++: double contourArea(Mat contour, bool oriented = false) // /** *

Calculates a contour area.

* *

The function computes a contour area. Similarly to "moments", the area is * computed using the Green formula. Thus, the returned area and the number of * non-zero pixels, if you draw the contour using "drawContours" or "fillPoly", * can be different. * Also, the function will most certainly give a wrong results for contours with * self-intersections. * Example:

* *

// C++ code:

* *

vector contour;

* *

contour.push_back(Point2f(0, 0));

* *

contour.push_back(Point2f(10, 0));

* *

contour.push_back(Point2f(10, 10));

* *

contour.push_back(Point2f(5, 4));

* *

double area0 = contourArea(contour);

* *

vector approx;

* *

approxPolyDP(contour, approx, 5, true);

* *

double area1 = contourArea(approx);

* *

cout << "area0 =" << area0 << endl <<

* *

"area1 =" << area1 << endl <<

* *

"approx poly vertices" << approx.size() << endl;

* * @param contour Input vector of 2D points (contour vertices), stored in * std.vector or Mat. * @param oriented Oriented area flag. If it is true, the function returns a * signed area value, depending on the contour orientation (clockwise or * counter-clockwise). Using this feature you can determine orientation of a * contour by taking the sign of an area. By default, the parameter is * false, which means that the absolute value is returned. * * @see org.opencv.imgproc.Imgproc.contourArea */ public static double contourArea(Mat contour, boolean oriented) { double retVal = contourArea_0(contour.nativeObj, oriented); return retVal; } /** *

Calculates a contour area.

* *

The function computes a contour area. Similarly to "moments", the area is * computed using the Green formula. Thus, the returned area and the number of * non-zero pixels, if you draw the contour using "drawContours" or "fillPoly", * can be different. * Also, the function will most certainly give a wrong results for contours with * self-intersections. * Example:

* *

// C++ code:

* *

vector contour;

* *

contour.push_back(Point2f(0, 0));

* *

contour.push_back(Point2f(10, 0));

* *

contour.push_back(Point2f(10, 10));

* *

contour.push_back(Point2f(5, 4));

* *

double area0 = contourArea(contour);

* *

vector approx;

* *

approxPolyDP(contour, approx, 5, true);

* *

double area1 = contourArea(approx);

* *

cout << "area0 =" << area0 << endl <<

* *

"area1 =" << area1 << endl <<

* *

"approx poly vertices" << approx.size() << endl;

* * @param contour Input vector of 2D points (contour vertices), stored in * std.vector or Mat. * * @see org.opencv.imgproc.Imgproc.contourArea */ public static double contourArea(Mat contour) { double retVal = contourArea_1(contour.nativeObj); return retVal; } // // C++: void convertMaps(Mat map1, Mat map2, Mat& dstmap1, Mat& dstmap2, int dstmap1type, bool nninterpolation = false) // /** *

Converts image transformation maps from one representation to another.

* *

The function converts a pair of maps for "remap" from one representation to * another. The following options ((map1.type(), map2.type()) * -> (dstmap1.type(), dstmap2.type())) are supported:

*
    *
  • (CV_32FC1, CV_32FC1) -> (CV_16SC2, CV_16UC1). This is the * most frequently used conversion operation, in which the original * floating-point maps (see "remap") are converted to a more compact and much * faster fixed-point representation. The first output array contains the * rounded coordinates and the second array (created only when nninterpolation=false) * contains indices in the interpolation tables. *
  • (CV_32FC2) -> (CV_16SC2, CV_16UC1). The same as above but the * original maps are stored in one 2-channel matrix. *
  • Reverse conversion. Obviously, the reconstructed floating-point maps * will not be exactly the same as the originals. *
* * @param map1 The first input map of type CV_16SC2, * CV_32FC1, or CV_32FC2. * @param map2 The second input map of type CV_16UC1, * CV_32FC1, or none (empty matrix), respectively. * @param dstmap1 The first output map that has the type dstmap1type * and the same size as src. * @param dstmap2 The second output map. * @param dstmap1type Type of the first output map that should be * CV_16SC2, CV_32FC1, or CV_32FC2. * @param nninterpolation Flag indicating whether the fixed-point maps are used * for the nearest-neighbor or for a more complex interpolation. * * @see org.opencv.imgproc.Imgproc.convertMaps * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.imgproc.Imgproc#initUndistortRectifyMap * @see org.opencv.imgproc.Imgproc#undistort */ public static void convertMaps(Mat map1, Mat map2, Mat dstmap1, Mat dstmap2, int dstmap1type, boolean nninterpolation) { convertMaps_0(map1.nativeObj, map2.nativeObj, dstmap1.nativeObj, dstmap2.nativeObj, dstmap1type, nninterpolation); return; } /** *

Converts image transformation maps from one representation to another.

* *

The function converts a pair of maps for "remap" from one representation to * another. The following options ((map1.type(), map2.type()) * -> (dstmap1.type(), dstmap2.type())) are supported:

*
    *
  • (CV_32FC1, CV_32FC1) -> (CV_16SC2, CV_16UC1). This is the * most frequently used conversion operation, in which the original * floating-point maps (see "remap") are converted to a more compact and much * faster fixed-point representation. The first output array contains the * rounded coordinates and the second array (created only when nninterpolation=false) * contains indices in the interpolation tables. *
  • (CV_32FC2) -> (CV_16SC2, CV_16UC1). The same as above but the * original maps are stored in one 2-channel matrix. *
  • Reverse conversion. Obviously, the reconstructed floating-point maps * will not be exactly the same as the originals. *
* * @param map1 The first input map of type CV_16SC2, * CV_32FC1, or CV_32FC2. * @param map2 The second input map of type CV_16UC1, * CV_32FC1, or none (empty matrix), respectively. * @param dstmap1 The first output map that has the type dstmap1type * and the same size as src. * @param dstmap2 The second output map. * @param dstmap1type Type of the first output map that should be * CV_16SC2, CV_32FC1, or CV_32FC2. * * @see org.opencv.imgproc.Imgproc.convertMaps * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.imgproc.Imgproc#initUndistortRectifyMap * @see org.opencv.imgproc.Imgproc#undistort */ public static void convertMaps(Mat map1, Mat map2, Mat dstmap1, Mat dstmap2, int dstmap1type) { convertMaps_1(map1.nativeObj, map2.nativeObj, dstmap1.nativeObj, dstmap2.nativeObj, dstmap1type); return; } // // C++: void convexHull(vector_Point points, vector_int& hull, bool clockwise = false, _hidden_ returnPoints = true) // /** *

Finds the convex hull of a point set.

* *

The functions find the convex hull of a 2D point set using the Sklansky's * algorithm [Sklansky82] that has *O(N logN)* complexity in the current * implementation. See the OpenCV sample convexhull.cpp that * demonstrates the usage of different function variants.

* *

Note:

*
    *
  • An example using the convexHull functionality can be found at * opencv_source_code/samples/cpp/convexhull.cpp *
* * @param points Input 2D point set, stored in std.vector or * Mat. * @param hull Output convex hull. It is either an integer vector of indices or * vector of points. In the first case, the hull elements are * 0-based indices of the convex hull points in the original array (since the * set of convex hull points is a subset of the original point set). In the * second case, hull elements are the convex hull points * themselves. * @param clockwise Orientation flag. If it is true, the output convex hull is * oriented clockwise. Otherwise, it is oriented counter-clockwise. The assumed * coordinate system has its X axis pointing to the right, and its Y axis * pointing upwards. * * @see org.opencv.imgproc.Imgproc.convexHull */ public static void convexHull(MatOfPoint points, MatOfInt hull, boolean clockwise) { Mat points_mat = points; Mat hull_mat = hull; convexHull_0(points_mat.nativeObj, hull_mat.nativeObj, clockwise); return; } /** *

Finds the convex hull of a point set.

* *

The functions find the convex hull of a 2D point set using the Sklansky's * algorithm [Sklansky82] that has *O(N logN)* complexity in the current * implementation. See the OpenCV sample convexhull.cpp that * demonstrates the usage of different function variants.

* *

Note:

*
    *
  • An example using the convexHull functionality can be found at * opencv_source_code/samples/cpp/convexhull.cpp *
* * @param points Input 2D point set, stored in std.vector or * Mat. * @param hull Output convex hull. It is either an integer vector of indices or * vector of points. In the first case, the hull elements are * 0-based indices of the convex hull points in the original array (since the * set of convex hull points is a subset of the original point set). In the * second case, hull elements are the convex hull points * themselves. * * @see org.opencv.imgproc.Imgproc.convexHull */ public static void convexHull(MatOfPoint points, MatOfInt hull) { Mat points_mat = points; Mat hull_mat = hull; convexHull_1(points_mat.nativeObj, hull_mat.nativeObj); return; } // // C++: void convexityDefects(vector_Point contour, vector_int convexhull, vector_Vec4i& convexityDefects) // /** *

Finds the convexity defects of a contour.

* *

The function finds all convexity defects of the input contour and returns a * sequence of the CvConvexityDefect structures, where * CvConvexityDetect is defined as:

* *

// C++ code:

* *

struct CvConvexityDefect

* * *

CvPoint* start; // point of the contour where the defect begins

* *

CvPoint* end; // point of the contour where the defect ends

* *

CvPoint* depth_point; // the farthest from the convex hull point within the * defect

* *

float depth; // distance between the farthest point and the convex hull

* *

};

* *

The figure below displays convexity defects of a hand contour:

* * @param contour Input contour. * @param convexhull Convex hull obtained using "convexHull" that should contain * indices of the contour points that make the hull. * @param convexityDefects The output vector of convexity defects. In C++ and * the new Python/Java interface each convexity defect is represented as * 4-element integer vector (a.k.a. cv.Vec4i): (start_index, * end_index, farthest_pt_index, fixpt_depth), where indices are 0-based * indices in the original contour of the convexity defect beginning, end and * the farthest point, and fixpt_depth is fixed-point approximation * (with 8 fractional bits) of the distance between the farthest contour point * and the hull. That is, to get the floating-point value of the depth will be * fixpt_depth/256.0. In C interface convexity defect is * represented by CvConvexityDefect structure - see below. * * @see org.opencv.imgproc.Imgproc.convexityDefects */ public static void convexityDefects(MatOfPoint contour, MatOfInt convexhull, MatOfInt4 convexityDefects) { Mat contour_mat = contour; Mat convexhull_mat = convexhull; Mat convexityDefects_mat = convexityDefects; convexityDefects_0(contour_mat.nativeObj, convexhull_mat.nativeObj, convexityDefects_mat.nativeObj); return; } // // C++: void copyMakeBorder(Mat src, Mat& dst, int top, int bottom, int left, int right, int borderType, Scalar value = Scalar()) // /** *

Forms a border around an image.

* *

The function copies the source image into the middle of the destination * image. The areas to the left, to the right, above and below the copied source * image will be filled with extrapolated pixels. This is not what * "FilterEngine" or filtering functions based on it do (they extrapolate pixels * on-fly), but what other more complex functions, including your own, may do to * simplify image boundary handling. * The function supports the mode when src is already in the middle * of dst. In this case, the function does not copy * src itself but simply constructs the border, for example:

* *

// C++ code:

* *

// let border be the same in all directions

* *

int border=2;

* *

// constructs a larger image to fit both the image and the border

* *

Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());

* *

// select the middle part of it w/o copying data

* *

Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));

* *

// convert image from RGB to grayscale

* *

cvtColor(rgb, gray, CV_RGB2GRAY);

* *

// form a border in-place

* *

copyMakeBorder(gray, gray_buf, border, border,

* *

border, border, BORDER_REPLICATE);

* *

// now do some custom filtering......

* *

Note:

* *

When the source image is a part (ROI) of a bigger image, the function will * try to use the pixels outside of the ROI to form a border. To disable this * feature and always do extrapolation, as if src was not a ROI, * use borderType | BORDER_ISOLATED.

* * @param src Source image. * @param dst Destination image of the same type as src and the * size Size(src.cols+left+right, src.rows+top+bottom). * @param top a top * @param bottom a bottom * @param left a left * @param right Parameter specifying how many pixels in each direction from the * source image rectangle to extrapolate. For example, top=1, bottom=1, * left=1, right=1 mean that 1 pixel-wide border needs to be built. * @param borderType Border type. See "borderInterpolate" for details. * @param value Border value if borderType==BORDER_CONSTANT. * * @see org.opencv.imgproc.Imgproc.copyMakeBorder * @see org.opencv.imgproc.Imgproc#borderInterpolate */ public static void copyMakeBorder(Mat src, Mat dst, int top, int bottom, int left, int right, int borderType, Scalar value) { copyMakeBorder_0(src.nativeObj, dst.nativeObj, top, bottom, left, right, borderType, value.val[0], value.val[1], value.val[2], value.val[3]); return; } /** *

Forms a border around an image.

* *

The function copies the source image into the middle of the destination * image. The areas to the left, to the right, above and below the copied source * image will be filled with extrapolated pixels. This is not what * "FilterEngine" or filtering functions based on it do (they extrapolate pixels * on-fly), but what other more complex functions, including your own, may do to * simplify image boundary handling. * The function supports the mode when src is already in the middle * of dst. In this case, the function does not copy * src itself but simply constructs the border, for example:

* *

// C++ code:

* *

// let border be the same in all directions

* *

int border=2;

* *

// constructs a larger image to fit both the image and the border

* *

Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());

* *

// select the middle part of it w/o copying data

* *

Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));

* *

// convert image from RGB to grayscale

* *

cvtColor(rgb, gray, CV_RGB2GRAY);

* *

// form a border in-place

* *

copyMakeBorder(gray, gray_buf, border, border,

* *

border, border, BORDER_REPLICATE);

* *

// now do some custom filtering......

* *

Note:

* *

When the source image is a part (ROI) of a bigger image, the function will * try to use the pixels outside of the ROI to form a border. To disable this * feature and always do extrapolation, as if src was not a ROI, * use borderType | BORDER_ISOLATED.

* * @param src Source image. * @param dst Destination image of the same type as src and the * size Size(src.cols+left+right, src.rows+top+bottom). * @param top a top * @param bottom a bottom * @param left a left * @param right Parameter specifying how many pixels in each direction from the * source image rectangle to extrapolate. For example, top=1, bottom=1, * left=1, right=1 mean that 1 pixel-wide border needs to be built. * @param borderType Border type. See "borderInterpolate" for details. * * @see org.opencv.imgproc.Imgproc.copyMakeBorder * @see org.opencv.imgproc.Imgproc#borderInterpolate */ public static void copyMakeBorder(Mat src, Mat dst, int top, int bottom, int left, int right, int borderType) { copyMakeBorder_1(src.nativeObj, dst.nativeObj, top, bottom, left, right, borderType); return; } // // C++: void cornerEigenValsAndVecs(Mat src, Mat& dst, int blockSize, int ksize, int borderType = BORDER_DEFAULT) // /** *

Calculates eigenvalues and eigenvectors of image blocks for corner detection.

* *

For every pixel p, the function cornerEigenValsAndVecs * considers a blockSize x blockSize * neighborhood S(p). It calculates the covariation matrix of * derivatives over the neighborhood as:

* *

M = sum(by: S(p))(dI/dx)^2 sum(by: S(p))(dI/dx dI/dy)^2 * sum(by: S(p))(dI/dx dI/dy)^2 sum(by: S(p))(dI/dy)^2

* *

where the derivatives are computed using the "Sobel" operator.

* *

After that, it finds eigenvectors and eigenvalues of M and stores * them in the destination image as (lambda_1, lambda_2, x_1, y_1, x_2, * y_2) where

*
    *
  • lambda_1, lambda_2 are the non-sorted eigenvalues of * M *
  • x_1, y_1 are the eigenvectors corresponding to * lambda_1 *
  • x_2, y_2 are the eigenvectors corresponding to * lambda_2 *
* *

The output of the function can be used for robust edge or corner detection.

* *

Note:

*
    *
  • (Python) An example on how to use eigenvectors and eigenvalues to * estimate image texture flow direction can be found at opencv_source_code/samples/python2/texture_flow.py *
* * @param src Input single-channel 8-bit or floating-point image. * @param dst Image to store the results. It has the same size as * src and the type CV_32FC(6). * @param blockSize Neighborhood size (see details below). * @param ksize Aperture parameter for the "Sobel" operator. * @param borderType Pixel extrapolation method. See "borderInterpolate". * * @see org.opencv.imgproc.Imgproc.cornerEigenValsAndVecs * @see org.opencv.imgproc.Imgproc#cornerHarris * @see org.opencv.imgproc.Imgproc#cornerMinEigenVal * @see org.opencv.imgproc.Imgproc#preCornerDetect */ public static void cornerEigenValsAndVecs(Mat src, Mat dst, int blockSize, int ksize, int borderType) { cornerEigenValsAndVecs_0(src.nativeObj, dst.nativeObj, blockSize, ksize, borderType); return; } /** *

Calculates eigenvalues and eigenvectors of image blocks for corner detection.

* *

For every pixel p, the function cornerEigenValsAndVecs * considers a blockSize x blockSize * neighborhood S(p). It calculates the covariation matrix of * derivatives over the neighborhood as:

* *

M = sum(by: S(p))(dI/dx)^2 sum(by: S(p))(dI/dx dI/dy)^2 * sum(by: S(p))(dI/dx dI/dy)^2 sum(by: S(p))(dI/dy)^2

* *

where the derivatives are computed using the "Sobel" operator.

* *

After that, it finds eigenvectors and eigenvalues of M and stores * them in the destination image as (lambda_1, lambda_2, x_1, y_1, x_2, * y_2) where

*
    *
  • lambda_1, lambda_2 are the non-sorted eigenvalues of * M *
  • x_1, y_1 are the eigenvectors corresponding to * lambda_1 *
  • x_2, y_2 are the eigenvectors corresponding to * lambda_2 *
* *

The output of the function can be used for robust edge or corner detection.

* *

Note:

*
    *
  • (Python) An example on how to use eigenvectors and eigenvalues to * estimate image texture flow direction can be found at opencv_source_code/samples/python2/texture_flow.py *
* * @param src Input single-channel 8-bit or floating-point image. * @param dst Image to store the results. It has the same size as * src and the type CV_32FC(6). * @param blockSize Neighborhood size (see details below). * @param ksize Aperture parameter for the "Sobel" operator. * * @see org.opencv.imgproc.Imgproc.cornerEigenValsAndVecs * @see org.opencv.imgproc.Imgproc#cornerHarris * @see org.opencv.imgproc.Imgproc#cornerMinEigenVal * @see org.opencv.imgproc.Imgproc#preCornerDetect */ public static void cornerEigenValsAndVecs(Mat src, Mat dst, int blockSize, int ksize) { cornerEigenValsAndVecs_1(src.nativeObj, dst.nativeObj, blockSize, ksize); return; } // // C++: void cornerHarris(Mat src, Mat& dst, int blockSize, int ksize, double k, int borderType = BORDER_DEFAULT) // /** *

Harris edge detector.

* *

The function runs the Harris edge detector on the image. Similarly to * "cornerMinEigenVal" and "cornerEigenValsAndVecs", for each pixel (x, * y) it calculates a 2x2 gradient covariance matrix * M^((x,y)) over a blockSize x blockSize neighborhood. Then, * it computes the following characteristic:

* *

dst(x,y) = det M^((x,y)) - k * (tr M^((x,y)))^2

* *

Corners in the image can be found as the local maxima of this response map.

* * @param src Input single-channel 8-bit or floating-point image. * @param dst Image to store the Harris detector responses. It has the type * CV_32FC1 and the same size as src. * @param blockSize Neighborhood size (see the details on "cornerEigenValsAndVecs"). * @param ksize Aperture parameter for the "Sobel" operator. * @param k Harris detector free parameter. See the formula below. * @param borderType Pixel extrapolation method. See "borderInterpolate". * * @see org.opencv.imgproc.Imgproc.cornerHarris */ public static void cornerHarris(Mat src, Mat dst, int blockSize, int ksize, double k, int borderType) { cornerHarris_0(src.nativeObj, dst.nativeObj, blockSize, ksize, k, borderType); return; } /** *

Harris edge detector.

* *

The function runs the Harris edge detector on the image. Similarly to * "cornerMinEigenVal" and "cornerEigenValsAndVecs", for each pixel (x, * y) it calculates a 2x2 gradient covariance matrix * M^((x,y)) over a blockSize x blockSize neighborhood. Then, * it computes the following characteristic:

* *

dst(x,y) = det M^((x,y)) - k * (tr M^((x,y)))^2

* *

Corners in the image can be found as the local maxima of this response map.

* * @param src Input single-channel 8-bit or floating-point image. * @param dst Image to store the Harris detector responses. It has the type * CV_32FC1 and the same size as src. * @param blockSize Neighborhood size (see the details on "cornerEigenValsAndVecs"). * @param ksize Aperture parameter for the "Sobel" operator. * @param k Harris detector free parameter. See the formula below. * * @see org.opencv.imgproc.Imgproc.cornerHarris */ public static void cornerHarris(Mat src, Mat dst, int blockSize, int ksize, double k) { cornerHarris_1(src.nativeObj, dst.nativeObj, blockSize, ksize, k); return; } // // C++: void cornerMinEigenVal(Mat src, Mat& dst, int blockSize, int ksize = 3, int borderType = BORDER_DEFAULT) // /** *

Calculates the minimal eigenvalue of gradient matrices for corner detection.

* *

The function is similar to "cornerEigenValsAndVecs" but it calculates and * stores only the minimal eigenvalue of the covariance matrix of derivatives, * that is, min(lambda_1, lambda_2) in terms of the formulae in the * "cornerEigenValsAndVecs" description.

* * @param src Input single-channel 8-bit or floating-point image. * @param dst Image to store the minimal eigenvalues. It has the type * CV_32FC1 and the same size as src. * @param blockSize Neighborhood size (see the details on "cornerEigenValsAndVecs"). * @param ksize Aperture parameter for the "Sobel" operator. * @param borderType Pixel extrapolation method. See "borderInterpolate". * * @see org.opencv.imgproc.Imgproc.cornerMinEigenVal */ public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize, int ksize, int borderType) { cornerMinEigenVal_0(src.nativeObj, dst.nativeObj, blockSize, ksize, borderType); return; } /** *

Calculates the minimal eigenvalue of gradient matrices for corner detection.

* *

The function is similar to "cornerEigenValsAndVecs" but it calculates and * stores only the minimal eigenvalue of the covariance matrix of derivatives, * that is, min(lambda_1, lambda_2) in terms of the formulae in the * "cornerEigenValsAndVecs" description.

* * @param src Input single-channel 8-bit or floating-point image. * @param dst Image to store the minimal eigenvalues. It has the type * CV_32FC1 and the same size as src. * @param blockSize Neighborhood size (see the details on "cornerEigenValsAndVecs"). * @param ksize Aperture parameter for the "Sobel" operator. * * @see org.opencv.imgproc.Imgproc.cornerMinEigenVal */ public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize, int ksize) { cornerMinEigenVal_1(src.nativeObj, dst.nativeObj, blockSize, ksize); return; } /** *

Calculates the minimal eigenvalue of gradient matrices for corner detection.

* *

The function is similar to "cornerEigenValsAndVecs" but it calculates and * stores only the minimal eigenvalue of the covariance matrix of derivatives, * that is, min(lambda_1, lambda_2) in terms of the formulae in the * "cornerEigenValsAndVecs" description.

* * @param src Input single-channel 8-bit or floating-point image. * @param dst Image to store the minimal eigenvalues. It has the type * CV_32FC1 and the same size as src. * @param blockSize Neighborhood size (see the details on "cornerEigenValsAndVecs"). * * @see org.opencv.imgproc.Imgproc.cornerMinEigenVal */ public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize) { cornerMinEigenVal_2(src.nativeObj, dst.nativeObj, blockSize); return; } // // C++: void cornerSubPix(Mat image, vector_Point2f& corners, Size winSize, Size zeroZone, TermCriteria criteria) // /** *

Refines the corner locations.

* *

The function iterates to find the sub-pixel accurate location of corners or * radial saddle points, as shown on the figure below.

* *

Sub-pixel accurate corner locator is based on the observation that every * vector from the center q to a point p located within a * neighborhood of q is orthogonal to the image gradient at p * subject to image and measurement noise. Consider the expression:

* *

epsilon _i = (DI_(p_i))^T * (q - p_i)

* *

where (DI_(p_i)) is an image gradient at one of the points * p_i in a neighborhood of q. The value of q is to * be found so that epsilon_i is minimized. A system of equations may * be set up with epsilon_i set to zero:

* *

sum _i(DI_(p_i) * (DI_(p_i))^T) - sum _i(DI_(p_i) * (DI_(p_i))^T * * p_i)

* *

where the gradients are summed within a neighborhood ("search window") of * q. Calling the first gradient term G and the second * gradient term b gives:

* *

q = G^(-1) * b

* *

The algorithm sets the center of the neighborhood window at this new center * q and then iterates until the center stays within a set threshold.

* * @param image Input image. * @param corners Initial coordinates of the input corners and refined * coordinates provided for output. * @param winSize Half of the side length of the search window. For example, if * winSize=Size(5,5), then a 5*2+1 x 5*2+1 = 11 x 11 * search window is used. * @param zeroZone Half of the size of the dead region in the middle of the * search zone over which the summation in the formula below is not done. It is * used sometimes to avoid possible singularities of the autocorrelation matrix. * The value of (-1,-1) indicates that there is no such a size. * @param criteria Criteria for termination of the iterative process of corner * refinement. That is, the process of corner position refinement stops either * after criteria.maxCount iterations or when the corner position * moves by less than criteria.epsilon on some iteration. * * @see org.opencv.imgproc.Imgproc.cornerSubPix */ public static void cornerSubPix(Mat image, MatOfPoint2f corners, Size winSize, Size zeroZone, TermCriteria criteria) { Mat corners_mat = corners; cornerSubPix_0(image.nativeObj, corners_mat.nativeObj, winSize.width, winSize.height, zeroZone.width, zeroZone.height, criteria.type, criteria.maxCount, criteria.epsilon); return; } // // C++: Ptr_CLAHE createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)) // // Return type 'Ptr_CLAHE' is not supported, skipping the function // // C++: void createHanningWindow(Mat& dst, Size winSize, int type) // /** *

This function computes a Hanning window coefficients in two dimensions. See * http://en.wikipedia.org/wiki/Hann_function and http://en.wikipedia.org/wiki/Window_function * for more information.

* *

An example is shown below:

* *

// C++ code:

* *

// create hanning window of size 100x100 and type CV_32F

* *

Mat hann;

* *

createHanningWindow(hann, Size(100, 100), CV_32F);

* * @param dst Destination array to place Hann coefficients in * @param winSize The window size specifications * @param type Created array type * * @see org.opencv.imgproc.Imgproc.createHanningWindow * @see org.opencv.imgproc.Imgproc#phaseCorrelate */ public static void createHanningWindow(Mat dst, Size winSize, int type) { createHanningWindow_0(dst.nativeObj, winSize.width, winSize.height, type); return; } // // C++: void cvtColor(Mat src, Mat& dst, int code, int dstCn = 0) // /** *

Converts an image from one color space to another.

* *

The function converts an input image from one color space to another. In case * of a transformation to-from RGB color space, the order of the channels should * be specified explicitly (RGB or BGR). * Note that the default color format in OpenCV is often referred to as RGB but * it is actually BGR (the bytes are reversed). So the first byte in a standard * (24-bit) color image will be an 8-bit Blue component, the second byte will be * Green, and the third byte will be Red. The fourth, fifth, and sixth bytes * would then be the second pixel (Blue, then Green, then Red), and so on.

* *

The conventional ranges for R, G, and B channel values are:

*
    *
  • 0 to 255 for CV_8U images *
  • 0 to 65535 for CV_16U images *
  • 0 to 1 for CV_32F images *
* *

In case of linear transformations, the range does not matter. * But in case of a non-linear transformation, an input RGB image should be * normalized to the proper value range to get the correct results, for example, * for RGB-> L*u*v* transformation. For example, if you have a 32-bit * floating-point image directly converted from an 8-bit image without any * scaling, then it will have the 0..255 value range instead of 0..1 assumed by * the function. So, before calling cvtColor, you need first to * scale the image down:

* *

// C++ code:

* *

img *= 1./255;

* *

cvtColor(img, img, CV_BGR2Luv);

* *

If you use cvtColor with 8-bit images, the conversion will have * some information lost. For many applications, this will not be noticeable but * it is recommended to use 32-bit images in applications that need the full * range of colors or that convert an image before an operation and then convert * back. *

* *

If conversion adds the alpha channel, its value will set to the maximum of * corresponding channel range: 255 for CV_8U, 65535 for * CV_16U, 1 for CV_32F.

* *

The function can do the following transformations:

*
    *
  • RGB <-> GRAY (CV_BGR2GRAY, CV_RGB2GRAY, CV_GRAY2BGR, * CV_GRAY2RGB) Transformations within RGB space like adding/removing the * alpha channel, reversing the channel order, conversion to/from 16-bit RGB * color (R5:G6:B5 or R5:G5:B5), as well as conversion to/from grayscale using: *
* *

RGB[A] to Gray: Y <- 0.299 * R + 0.587 * G + 0.114 * B

* *

and

* *

Gray to RGB[A]: R <- Y, G <- Y, B <- Y, A <- max(ChannelRange)

* *

The conversion from a RGB image to gray is done with:

* *

* *

// C++ code:

* *

cvtColor(src, bwsrc, CV_RGB2GRAY);

* *

* *

More advanced channel reordering can also be done with "mixChannels".

*
    *
  • RGB <-> CIE XYZ.Rec 709 with D65 white point * (CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR, CV_XYZ2RGB): *
* *

X * Z ltBR gt <- 0.412453 0.357580 0.180423 * 0.212671 0.715160 0.072169 * 0.019334 0.119193 0.950227 ltBR gt * R * B ltBR gt

* * * *

R * B ltBR gt <- 3.240479 -1.53715 -0.498535 * -0.969256 1.875991 0.041556 * 0.055648 -0.204043 1.057311 ltBR gt * X * Z ltBR gt

* *

X, Y and Z cover the whole value range (in case of * floating-point images, Z may exceed 1).

*
    *
  • RGB <-> YCrCb JPEG (or YCC) (CV_BGR2YCrCb, * CV_RGB2YCrCb, CV_YCrCb2BGR, CV_YCrCb2RGB) *
* *

Y <- 0.299 * R + 0.587 * G + 0.114 * B

* * * *

Cr <- (R-Y) * 0.713 + delta

* * * *

Cb <- (B-Y) * 0.564 + delta

* * * *

R <- Y + 1.403 * (Cr - delta)

* * * *

G <- Y - 0.714 * (Cr - delta) - 0.344 * (Cb - delta)

* * * *

B <- Y + 1.773 * (Cb - delta)

* *

where

* *

delta = <= ft (128 for 8-bit images * 32768 for 16-bit images * 0.5 for floating-point images right.

* *

Y, Cr, and Cb cover the whole value range.

*
    *
  • RGB <-> HSV (CV_BGR2HSV, CV_RGB2HSV, CV_HSV2BGR, * CV_HSV2RGB) In case of 8-bit and 16-bit images, R, G, and B are * converted to the floating-point format and scaled to fit the 0 to 1 range. *
* *

V <- max(R,G,B)

* * * *

S <- (V-min(R,G,B))/(V) if V != 0; 0 otherwise

* * * *

H <- (60(G - B))/((V-min(R,G,B))) if V=R; (120+60(B - R))/((V-min(R,G,B))) * if V=G; (240+60(R - G))/((V-min(R,G,B))) if V=B

* *

If H<0 then H <- H+360. On output 0 <= V <= 1, * 0 <= S <= 1, 0 <= H <= 360.

* *

The values are then converted to the destination data type:

*
    *
  • 8-bit images *
* *

V <- 255 V, S <- 255 S, H <- H/2(to fit to 0 to 255)

* *
    *
  • 16-bit images (currently not supported) *
* *

V <- 65535 V, S <- 65535 S, H <- H

* *
    *
  • 32-bit images H, S, and V are left as is *
  • RGB <-> HLS (CV_BGR2HLS, CV_RGB2HLS, CV_HLS2BGR, * CV_HLS2RGB). *
*

In case of 8-bit and 16-bit images, R, G, and B are converted to the * floating-point format and scaled to fit the 0 to 1 range.

* *

V_(max) <- (max)(R,G,B)

* * * *

V_(min) <- (min)(R,G,B)

* * * *

L <- (V_(max) + V_(min))/2

* * * *

S <- fork ((V_(max) - V_(min))/(V_(max) + V_(min)))(if L < * 0.5)<BR>((V_(max) - V_(min))/(2 - (V_(max) + V_(min))))(if L >= 0.5)

* * * *

H <- forkthree ((60(G - B))/(S))(if V_(max)=R)<BR>((120+60(B - * R))/(S))(if V_(max)=G)<BR>((240+60(R - G))/(S))(if V_(max)=B)

* *

If H<0 then H <- H+360. On output 0 <= L <= 1, * 0 <= S <= 1, 0 <= H <= 360.

* *

The values are then converted to the destination data type:

*
    *
  • 8-bit images *
* *

V <- 255 * V, S <- 255 * S, H <- H/2(to fit to 0 to 255)

* *
    *
  • 16-bit images (currently not supported) *
* *

V <- 65535 * V, S <- 65535 * S, H <- H

* *
    *
  • 32-bit images H, S, V are left as is *
  • RGB <-> CIE L*a*b* (CV_BGR2Lab, CV_RGB2Lab, CV_Lab2BGR, * CV_Lab2RGB). *
*

In case of 8-bit and 16-bit images, R, G, and B are converted to the * floating-point format and scaled to fit the 0 to 1 range.

* *

[X Y Z] <- * |0.412453 0.357580 0.180423| * |0.212671 0.715160 0.072169| * |0.019334 0.119193 0.950227|

*
    *
  • [R G B] * * *
* *

X <- X/X_n, where X_n = 0.950456

* * * *

Z <- Z/Z_n, where Z_n = 1.088754

* * * *

L <- 116*Y^(1/3)-16 for Y>0.008856; 903.3*Y for Y <= 0.008856

* * * *

a <- 500(f(X)-f(Y)) + delta

* * * *

b <- 200(f(Y)-f(Z)) + delta

* *

where

* *

f(t)= t^(1/3) for t>0.008856; 7.787 t+16/116 for t <= 0.008856

* *

and

* *

delta = 128 for 8-bit images; 0 for floating-point images

* *

This outputs 0 <= L <= 100, -127 <= a <= 127, -127 <= b * <= 127. The values are then converted to the destination data type:

*
    *
  • 8-bit images *
* *

L <- L*255/100, a <- a + 128, b <- b + 128

* *
    *
  • 16-bit images (currently not supported) *
  • 32-bit images L, a, and b are left as is *
  • RGB <-> CIE L*u*v* (CV_BGR2Luv, CV_RGB2Luv, CV_Luv2BGR, * CV_Luv2RGB). *
*

In case of 8-bit and 16-bit images, R, G, and B are converted to the * floating-point format and scaled to fit 0 to 1 range.

* *

[X Y Z] <- * |0.412453 0.357580 0.180423| * |0.212671 0.715160 0.072169| * |0.019334 0.119193 0.950227|

*
    *
  • [R G B] * * *
* *

L <- 116 Y^(1/3) for Y>0.008856; 903.3 Y for Y <= 0.008856

* * * *

u' <- 4*X/(X + 15*Y + 3 Z)

* * * *

v' <- 9*Y/(X + 15*Y + 3 Z)

* * * *

u <- 13*L*(u' - u_n) where u_n=0.19793943

* * * *

v <- 13*L*(v' - v_n) where v_n=0.46831096

* *

This outputs 0 <= L <= 100, -134 <= u <= 220, -140 <= v * <= 122.

* *

The values are then converted to the destination data type:

*
    *
  • 8-bit images *
* *

L <- 255/100 L, u <- 255/354(u + 134), v <- 255/262(v + 140)

* *
    *
  • 16-bit images (currently not supported) *
  • 32-bit images L, u, and v are left as is *
* *

The above formulae for converting RGB to/from various color spaces have been * taken from multiple sources on the web, primarily from the Charles Poynton * site http://www.poynton.com/ColorFAQ.html

*
    *
  • Bayer -> RGB (CV_BayerBG2BGR, CV_BayerGB2BGR, * CV_BayerRG2BGR, CV_BayerGR2BGR, CV_BayerBG2RGB, CV_BayerGB2RGB, * CV_BayerRG2RGB, CV_BayerGR2RGB). The Bayer pattern is widely used in * CCD and CMOS cameras. It enables you to get color pictures from a single * plane where R,G, and B pixels (sensors of a particular component) are * interleaved as follows: The output RGB components of a pixel are interpolated * from 1, 2, or *
* *

// C++ code:

* *

4 neighbors of the pixel having the same color. There are several

* *

modifications of the above pattern that can be achieved by shifting

* *

the pattern one pixel left and/or one pixel up. The two letters

* *

C_1 and

* *

C_2 in the conversion constants CV_Bayer C_1 * C_2 2BGR and CV_Bayer C_1 C_2 * 2RGB indicate the particular pattern

* *

type. These are components from the second row, second and third

* *

columns, respectively. For example, the above pattern has a very

* *

popular "BG" type.

* * @param src input image: 8-bit unsigned, 16-bit unsigned (CV_16UC...), * or single-precision floating-point. * @param dst output image of the same size and depth as src. * @param code color space conversion code (see the description below). * @param dstCn number of channels in the destination image; if the parameter is * 0, the number of the channels is derived automatically from src * and code. * * @see org.opencv.imgproc.Imgproc.cvtColor */ public static void cvtColor(Mat src, Mat dst, int code, int dstCn) { cvtColor_0(src.nativeObj, dst.nativeObj, code, dstCn); return; } /** *

Converts an image from one color space to another.

* *

The function converts an input image from one color space to another. In case * of a transformation to-from RGB color space, the order of the channels should * be specified explicitly (RGB or BGR). * Note that the default color format in OpenCV is often referred to as RGB but * it is actually BGR (the bytes are reversed). So the first byte in a standard * (24-bit) color image will be an 8-bit Blue component, the second byte will be * Green, and the third byte will be Red. The fourth, fifth, and sixth bytes * would then be the second pixel (Blue, then Green, then Red), and so on.

* *

The conventional ranges for R, G, and B channel values are:

*
    *
  • 0 to 255 for CV_8U images *
  • 0 to 65535 for CV_16U images *
  • 0 to 1 for CV_32F images *
* *

In case of linear transformations, the range does not matter. * But in case of a non-linear transformation, an input RGB image should be * normalized to the proper value range to get the correct results, for example, * for RGB-> L*u*v* transformation. For example, if you have a 32-bit * floating-point image directly converted from an 8-bit image without any * scaling, then it will have the 0..255 value range instead of 0..1 assumed by * the function. So, before calling cvtColor, you need first to * scale the image down:

* *

// C++ code:

* *

img *= 1./255;

* *

cvtColor(img, img, CV_BGR2Luv);

* *

If you use cvtColor with 8-bit images, the conversion will have * some information lost. For many applications, this will not be noticeable but * it is recommended to use 32-bit images in applications that need the full * range of colors or that convert an image before an operation and then convert * back. *

* *

If conversion adds the alpha channel, its value will set to the maximum of * corresponding channel range: 255 for CV_8U, 65535 for * CV_16U, 1 for CV_32F.

* *

The function can do the following transformations:

*
    *
  • RGB <-> GRAY (CV_BGR2GRAY, CV_RGB2GRAY, CV_GRAY2BGR, * CV_GRAY2RGB) Transformations within RGB space like adding/removing the * alpha channel, reversing the channel order, conversion to/from 16-bit RGB * color (R5:G6:B5 or R5:G5:B5), as well as conversion to/from grayscale using: *
* *

RGB[A] to Gray: Y <- 0.299 * R + 0.587 * G + 0.114 * B

* *

and

* *

Gray to RGB[A]: R <- Y, G <- Y, B <- Y, A <- max(ChannelRange)

* *

The conversion from a RGB image to gray is done with:

* *

* *

// C++ code:

* *

cvtColor(src, bwsrc, CV_RGB2GRAY);

* *

* *

More advanced channel reordering can also be done with "mixChannels".

*
    *
  • RGB <-> CIE XYZ.Rec 709 with D65 white point * (CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR, CV_XYZ2RGB): *
* *

X * Z ltBR gt <- 0.412453 0.357580 0.180423 * 0.212671 0.715160 0.072169 * 0.019334 0.119193 0.950227 ltBR gt * R * B ltBR gt

* * * *

R * B ltBR gt <- 3.240479 -1.53715 -0.498535 * -0.969256 1.875991 0.041556 * 0.055648 -0.204043 1.057311 ltBR gt * X * Z ltBR gt

* *

X, Y and Z cover the whole value range (in case of * floating-point images, Z may exceed 1).

*
    *
  • RGB <-> YCrCb JPEG (or YCC) (CV_BGR2YCrCb, * CV_RGB2YCrCb, CV_YCrCb2BGR, CV_YCrCb2RGB) *
* *

Y <- 0.299 * R + 0.587 * G + 0.114 * B

* * * *

Cr <- (R-Y) * 0.713 + delta

* * * *

Cb <- (B-Y) * 0.564 + delta

* * * *

R <- Y + 1.403 * (Cr - delta)

* * * *

G <- Y - 0.714 * (Cr - delta) - 0.344 * (Cb - delta)

* * * *

B <- Y + 1.773 * (Cb - delta)

* *

where

* *

delta = <= ft (128 for 8-bit images * 32768 for 16-bit images * 0.5 for floating-point images right.

* *

Y, Cr, and Cb cover the whole value range.

*
    *
  • RGB <-> HSV (CV_BGR2HSV, CV_RGB2HSV, CV_HSV2BGR, * CV_HSV2RGB) In case of 8-bit and 16-bit images, R, G, and B are * converted to the floating-point format and scaled to fit the 0 to 1 range. *
* *

V <- max(R,G,B)

* * * *

S <- (V-min(R,G,B))/(V) if V != 0; 0 otherwise

* * * *

H <- (60(G - B))/((V-min(R,G,B))) if V=R; (120+60(B - R))/((V-min(R,G,B))) * if V=G; (240+60(R - G))/((V-min(R,G,B))) if V=B

* *

If H<0 then H <- H+360. On output 0 <= V <= 1, * 0 <= S <= 1, 0 <= H <= 360.

* *

The values are then converted to the destination data type:

*
    *
  • 8-bit images *
* *

V <- 255 V, S <- 255 S, H <- H/2(to fit to 0 to 255)

* *
    *
  • 16-bit images (currently not supported) *
* *

V <- 65535 V, S <- 65535 S, H <- H

* *
    *
  • 32-bit images H, S, and V are left as is *
  • RGB <-> HLS (CV_BGR2HLS, CV_RGB2HLS, CV_HLS2BGR, * CV_HLS2RGB). *
*

In case of 8-bit and 16-bit images, R, G, and B are converted to the * floating-point format and scaled to fit the 0 to 1 range.

* *

V_(max) <- (max)(R,G,B)

* * * *

V_(min) <- (min)(R,G,B)

* * * *

L <- (V_(max) + V_(min))/2

* * * *

S <- fork ((V_(max) - V_(min))/(V_(max) + V_(min)))(if L < * 0.5)<BR>((V_(max) - V_(min))/(2 - (V_(max) + V_(min))))(if L >= 0.5)

* * * *

H <- forkthree ((60(G - B))/(S))(if V_(max)=R)<BR>((120+60(B - * R))/(S))(if V_(max)=G)<BR>((240+60(R - G))/(S))(if V_(max)=B)

* *

If H<0 then H <- H+360. On output 0 <= L <= 1, * 0 <= S <= 1, 0 <= H <= 360.

* *

The values are then converted to the destination data type:

*
    *
  • 8-bit images *
* *

V <- 255 * V, S <- 255 * S, H <- H/2(to fit to 0 to 255)

* *
    *
  • 16-bit images (currently not supported) *
* *

V <- 65535 * V, S <- 65535 * S, H <- H

* *
    *
  • 32-bit images H, S, V are left as is *
  • RGB <-> CIE L*a*b* (CV_BGR2Lab, CV_RGB2Lab, CV_Lab2BGR, * CV_Lab2RGB). *
*

In case of 8-bit and 16-bit images, R, G, and B are converted to the * floating-point format and scaled to fit the 0 to 1 range.

* *

[X Y Z] <- * |0.412453 0.357580 0.180423| * |0.212671 0.715160 0.072169| * |0.019334 0.119193 0.950227|

*
    *
  • [R G B] * * *
* *

X <- X/X_n, where X_n = 0.950456

* * * *

Z <- Z/Z_n, where Z_n = 1.088754

* * * *

L <- 116*Y^(1/3)-16 for Y>0.008856; 903.3*Y for Y <= 0.008856

* * * *

a <- 500(f(X)-f(Y)) + delta

* * * *

b <- 200(f(Y)-f(Z)) + delta

* *

where

* *

f(t)= t^(1/3) for t>0.008856; 7.787 t+16/116 for t <= 0.008856

* *

and

* *

delta = 128 for 8-bit images; 0 for floating-point images

* *

This outputs 0 <= L <= 100, -127 <= a <= 127, -127 <= b * <= 127. The values are then converted to the destination data type:

*
    *
  • 8-bit images *
* *

L <- L*255/100, a <- a + 128, b <- b + 128

* *
    *
  • 16-bit images (currently not supported) *
  • 32-bit images L, a, and b are left as is *
  • RGB <-> CIE L*u*v* (CV_BGR2Luv, CV_RGB2Luv, CV_Luv2BGR, * CV_Luv2RGB). *
*

In case of 8-bit and 16-bit images, R, G, and B are converted to the * floating-point format and scaled to fit 0 to 1 range.

* *

[X Y Z] <- * |0.412453 0.357580 0.180423| * |0.212671 0.715160 0.072169| * |0.019334 0.119193 0.950227|

*
    *
  • [R G B] * * *
* *

L <- 116 Y^(1/3) for Y>0.008856; 903.3 Y for Y <= 0.008856

* * * *

u' <- 4*X/(X + 15*Y + 3 Z)

* * * *

v' <- 9*Y/(X + 15*Y + 3 Z)

* * * *

u <- 13*L*(u' - u_n) where u_n=0.19793943

* * * *

v <- 13*L*(v' - v_n) where v_n=0.46831096

* *

This outputs 0 <= L <= 100, -134 <= u <= 220, -140 <= v * <= 122.

* *

The values are then converted to the destination data type:

*
    *
  • 8-bit images *
* *

L <- 255/100 L, u <- 255/354(u + 134), v <- 255/262(v + 140)

* *
    *
  • 16-bit images (currently not supported) *
  • 32-bit images L, u, and v are left as is *
* *

The above formulae for converting RGB to/from various color spaces have been * taken from multiple sources on the web, primarily from the Charles Poynton * site http://www.poynton.com/ColorFAQ.html

*
    *
  • Bayer -> RGB (CV_BayerBG2BGR, CV_BayerGB2BGR, * CV_BayerRG2BGR, CV_BayerGR2BGR, CV_BayerBG2RGB, CV_BayerGB2RGB, * CV_BayerRG2RGB, CV_BayerGR2RGB). The Bayer pattern is widely used in * CCD and CMOS cameras. It enables you to get color pictures from a single * plane where R,G, and B pixels (sensors of a particular component) are * interleaved as follows: The output RGB components of a pixel are interpolated * from 1, 2, or *
* *

// C++ code:

* *

4 neighbors of the pixel having the same color. There are several

* *

modifications of the above pattern that can be achieved by shifting

* *

the pattern one pixel left and/or one pixel up. The two letters

* *

C_1 and

* *

C_2 in the conversion constants CV_Bayer C_1 * C_2 2BGR and CV_Bayer C_1 C_2 * 2RGB indicate the particular pattern

* *

type. These are components from the second row, second and third

* *

columns, respectively. For example, the above pattern has a very

* *

popular "BG" type.

* * @param src input image: 8-bit unsigned, 16-bit unsigned (CV_16UC...), * or single-precision floating-point. * @param dst output image of the same size and depth as src. * @param code color space conversion code (see the description below). * * @see org.opencv.imgproc.Imgproc.cvtColor */ public static void cvtColor(Mat src, Mat dst, int code) { cvtColor_1(src.nativeObj, dst.nativeObj, code); return; } // // C++: void dilate(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) // /** *

Dilates an image by using a specific structuring element.

* *

The function dilates the source image using the specified structuring element * that determines the shape of a pixel neighborhood over which the maximum is * taken:

* *

dst(x,y) = max _((x',y'): element(x',y') != 0) src(x+x',y+y')

* *

The function supports the in-place mode. Dilation can be applied several * (iterations) times. In case of multi-channel images, each * channel is processed independently.

* *

Note:

*
    *
  • An example using the morphological dilate operation can be found at * opencv_source_code/samples/cpp/morphology2.cpp *
* * @param src input image; the number of channels can be arbitrary, but the * depth should be one of CV_8U, CV_16U, * CV_16S, CV_32F" or CV_64F". * @param dst output image of the same size and type as src. * @param kernel a kernel * @param anchor position of the anchor within the element; default value * (-1, -1) means that the anchor is at the element center. * @param iterations number of times dilation is applied. * @param borderType pixel extrapolation method (see "borderInterpolate" for * details). * @param borderValue border value in case of a constant border (see * "createMorphologyFilter" for details). * * @see org.opencv.imgproc.Imgproc.dilate * @see org.opencv.imgproc.Imgproc#erode * @see org.opencv.imgproc.Imgproc#morphologyEx */ public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) { dilate_0(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); return; } /** *

Dilates an image by using a specific structuring element.

* *

The function dilates the source image using the specified structuring element * that determines the shape of a pixel neighborhood over which the maximum is * taken:

* *

dst(x,y) = max _((x',y'): element(x',y') != 0) src(x+x',y+y')

* *

The function supports the in-place mode. Dilation can be applied several * (iterations) times. In case of multi-channel images, each * channel is processed independently.

* *

Note:

*
    *
  • An example using the morphological dilate operation can be found at * opencv_source_code/samples/cpp/morphology2.cpp *
* * @param src input image; the number of channels can be arbitrary, but the * depth should be one of CV_8U, CV_16U, * CV_16S, CV_32F" or CV_64F". * @param dst output image of the same size and type as src. * @param kernel a kernel * @param anchor position of the anchor within the element; default value * (-1, -1) means that the anchor is at the element center. * @param iterations number of times dilation is applied. * * @see org.opencv.imgproc.Imgproc.dilate * @see org.opencv.imgproc.Imgproc#erode * @see org.opencv.imgproc.Imgproc#morphologyEx */ public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations) { dilate_1(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations); return; } /** *

Dilates an image by using a specific structuring element.

* *

The function dilates the source image using the specified structuring element * that determines the shape of a pixel neighborhood over which the maximum is * taken:

* *

dst(x,y) = max _((x',y'): element(x',y') != 0) src(x+x',y+y')

* *

The function supports the in-place mode. Dilation can be applied several * (iterations) times. In case of multi-channel images, each * channel is processed independently.

* *

Note:

*
    *
  • An example using the morphological dilate operation can be found at * opencv_source_code/samples/cpp/morphology2.cpp *
* * @param src input image; the number of channels can be arbitrary, but the * depth should be one of CV_8U, CV_16U, * CV_16S, CV_32F" or CV_64F". * @param dst output image of the same size and type as src. * @param kernel a kernel * * @see org.opencv.imgproc.Imgproc.dilate * @see org.opencv.imgproc.Imgproc#erode * @see org.opencv.imgproc.Imgproc#morphologyEx */ public static void dilate(Mat src, Mat dst, Mat kernel) { dilate_2(src.nativeObj, dst.nativeObj, kernel.nativeObj); return; } // // C++: void distanceTransform(Mat src, Mat& dst, int distanceType, int maskSize) // /** *

Calculates the distance to the closest zero pixel for each pixel of the * source image.

* *

The functions distanceTransform calculate the approximate or * precise distance from every binary image pixel to the nearest zero pixel. * For zero image pixels, the distance will obviously be zero.

* *

When maskSize == CV_DIST_MASK_PRECISE and distanceType == * CV_DIST_L2, the function runs the algorithm described in * [Felzenszwalb04]. This algorithm is parallelized with the TBB library.

* *

In other cases, the algorithm [Borgefors86] is used. This means that for a * pixel the function finds the shortest path to the nearest zero pixel * consisting of basic shifts: horizontal, vertical, diagonal, or knight's move * (the latest is available for a 5x 5 mask). The overall distance is * calculated as a sum of these basic distances. Since the distance function * should be symmetric, all of the horizontal and vertical shifts must have the * same cost (denoted as a), all the diagonal shifts must have the * same cost (denoted as b), and all knight's moves must have the * same cost (denoted as c). For the CV_DIST_C and * CV_DIST_L1 types, the distance is calculated precisely, whereas * for CV_DIST_L2 (Euclidean distance) the distance can be * calculated only with a relative error (a 5x 5 mask gives more * accurate results). For a,b, and c, * OpenCV uses the values suggested in the original paper:

* *

============== =================== ====================== * CV_DIST_C (3x 3) a = 1, b = 1 \ * ============== =================== ====================== * CV_DIST_L1 (3x 3) a = 1, b = 2 \ * CV_DIST_L2 (3x 3) a=0.955, b=1.3693 \ * CV_DIST_L2 (5x 5) a=1, b=1.4, c=2.1969 \ * ============== =================== ======================

* *

Typically, for a fast, coarse distance estimation CV_DIST_L2, a * 3x 3 mask is used. For a more accurate distance estimation * CV_DIST_L2, a 5x 5 mask or the precise algorithm is * used. * Note that both the precise and the approximate algorithms are linear on the * number of pixels.

* *

The second variant of the function does not only compute the minimum distance * for each pixel (x, y) but also identifies the nearest connected * component consisting of zero pixels (labelType==DIST_LABEL_CCOMP) * or the nearest zero pixel (labelType==DIST_LABEL_PIXEL). Index * of the component/pixel is stored in labels(x, y). * When labelType==DIST_LABEL_CCOMP, the function automatically * finds connected components of zero pixels in the input image and marks them * with distinct labels. When labelType==DIST_LABEL_CCOMP, the * function scans through the input image and marks all the zero pixels with * distinct labels.

* *

In this mode, the complexity is still linear. * That is, the function provides a very fast way to compute the Voronoi diagram * for a binary image. * Currently, the second variant can use only the approximate distance transform * algorithm, i.e. maskSize=CV_DIST_MASK_PRECISE is not supported * yet.

* *

Note:

*
    *
  • An example on using the distance transform can be found at * opencv_source_code/samples/cpp/distrans.cpp *
  • (Python) An example on using the distance transform can be found at * opencv_source/samples/python2/distrans.py *
* * @param src 8-bit, single-channel (binary) source image. * @param dst Output image with calculated distances. It is a 32-bit * floating-point, single-channel image of the same size as src. * @param distanceType Type of distance. It can be CV_DIST_L1, * CV_DIST_L2, or CV_DIST_C. * @param maskSize Size of the distance transform mask. It can be 3, 5, or * CV_DIST_MASK_PRECISE (the latter option is only supported by the * first function). In case of the CV_DIST_L1 or CV_DIST_C * distance type, the parameter is forced to 3 because a 3x 3 mask * gives the same result as 5x 5 or any larger aperture. * * @see org.opencv.imgproc.Imgproc.distanceTransform */ public static void distanceTransform(Mat src, Mat dst, int distanceType, int maskSize) { distanceTransform_0(src.nativeObj, dst.nativeObj, distanceType, maskSize); return; } // // C++: void distanceTransform(Mat src, Mat& dst, Mat& labels, int distanceType, int maskSize, int labelType = DIST_LABEL_CCOMP) // /** *

Calculates the distance to the closest zero pixel for each pixel of the * source image.

* *

The functions distanceTransform calculate the approximate or * precise distance from every binary image pixel to the nearest zero pixel. * For zero image pixels, the distance will obviously be zero.

* *

When maskSize == CV_DIST_MASK_PRECISE and distanceType == * CV_DIST_L2, the function runs the algorithm described in * [Felzenszwalb04]. This algorithm is parallelized with the TBB library.

* *

In other cases, the algorithm [Borgefors86] is used. This means that for a * pixel the function finds the shortest path to the nearest zero pixel * consisting of basic shifts: horizontal, vertical, diagonal, or knight's move * (the latest is available for a 5x 5 mask). The overall distance is * calculated as a sum of these basic distances. Since the distance function * should be symmetric, all of the horizontal and vertical shifts must have the * same cost (denoted as a), all the diagonal shifts must have the * same cost (denoted as b), and all knight's moves must have the * same cost (denoted as c). For the CV_DIST_C and * CV_DIST_L1 types, the distance is calculated precisely, whereas * for CV_DIST_L2 (Euclidean distance) the distance can be * calculated only with a relative error (a 5x 5 mask gives more * accurate results). For a,b, and c, * OpenCV uses the values suggested in the original paper:

* *

============== =================== ====================== * CV_DIST_C (3x 3) a = 1, b = 1 \ * ============== =================== ====================== * CV_DIST_L1 (3x 3) a = 1, b = 2 \ * CV_DIST_L2 (3x 3) a=0.955, b=1.3693 \ * CV_DIST_L2 (5x 5) a=1, b=1.4, c=2.1969 \ * ============== =================== ======================

* *

Typically, for a fast, coarse distance estimation CV_DIST_L2, a * 3x 3 mask is used. For a more accurate distance estimation * CV_DIST_L2, a 5x 5 mask or the precise algorithm is * used. * Note that both the precise and the approximate algorithms are linear on the * number of pixels.

* *

The second variant of the function does not only compute the minimum distance * for each pixel (x, y) but also identifies the nearest connected * component consisting of zero pixels (labelType==DIST_LABEL_CCOMP) * or the nearest zero pixel (labelType==DIST_LABEL_PIXEL). Index * of the component/pixel is stored in labels(x, y). * When labelType==DIST_LABEL_CCOMP, the function automatically * finds connected components of zero pixels in the input image and marks them * with distinct labels. When labelType==DIST_LABEL_CCOMP, the * function scans through the input image and marks all the zero pixels with * distinct labels.

* *

In this mode, the complexity is still linear. * That is, the function provides a very fast way to compute the Voronoi diagram * for a binary image. * Currently, the second variant can use only the approximate distance transform * algorithm, i.e. maskSize=CV_DIST_MASK_PRECISE is not supported * yet.

* *

Note:

*
    *
  • An example on using the distance transform can be found at * opencv_source_code/samples/cpp/distrans.cpp *
  • (Python) An example on using the distance transform can be found at * opencv_source/samples/python2/distrans.py *
* * @param src 8-bit, single-channel (binary) source image. * @param dst Output image with calculated distances. It is a 32-bit * floating-point, single-channel image of the same size as src. * @param labels Optional output 2D array of labels (the discrete Voronoi * diagram). It has the type CV_32SC1 and the same size as * src. See the details below. * @param distanceType Type of distance. It can be CV_DIST_L1, * CV_DIST_L2, or CV_DIST_C. * @param maskSize Size of the distance transform mask. It can be 3, 5, or * CV_DIST_MASK_PRECISE (the latter option is only supported by the * first function). In case of the CV_DIST_L1 or CV_DIST_C * distance type, the parameter is forced to 3 because a 3x 3 mask * gives the same result as 5x 5 or any larger aperture. * @param labelType Type of the label array to build. If labelType==DIST_LABEL_CCOMP * then each connected component of zeros in src (as well as all * the non-zero pixels closest to the connected component) will be assigned the * same label. If labelType==DIST_LABEL_PIXEL then each zero pixel * (and all the non-zero pixels closest to it) gets its own label. * * @see org.opencv.imgproc.Imgproc.distanceTransform */ public static void distanceTransformWithLabels(Mat src, Mat dst, Mat labels, int distanceType, int maskSize, int labelType) { distanceTransformWithLabels_0(src.nativeObj, dst.nativeObj, labels.nativeObj, distanceType, maskSize, labelType); return; } /** *

Calculates the distance to the closest zero pixel for each pixel of the * source image.

* *

The functions distanceTransform calculate the approximate or * precise distance from every binary image pixel to the nearest zero pixel. * For zero image pixels, the distance will obviously be zero.

* *

When maskSize == CV_DIST_MASK_PRECISE and distanceType == * CV_DIST_L2, the function runs the algorithm described in * [Felzenszwalb04]. This algorithm is parallelized with the TBB library.

* *

In other cases, the algorithm [Borgefors86] is used. This means that for a * pixel the function finds the shortest path to the nearest zero pixel * consisting of basic shifts: horizontal, vertical, diagonal, or knight's move * (the latest is available for a 5x 5 mask). The overall distance is * calculated as a sum of these basic distances. Since the distance function * should be symmetric, all of the horizontal and vertical shifts must have the * same cost (denoted as a), all the diagonal shifts must have the * same cost (denoted as b), and all knight's moves must have the * same cost (denoted as c). For the CV_DIST_C and * CV_DIST_L1 types, the distance is calculated precisely, whereas * for CV_DIST_L2 (Euclidean distance) the distance can be * calculated only with a relative error (a 5x 5 mask gives more * accurate results). For a,b, and c, * OpenCV uses the values suggested in the original paper:

* *

============== =================== ====================== * CV_DIST_C (3x 3) a = 1, b = 1 \ * ============== =================== ====================== * CV_DIST_L1 (3x 3) a = 1, b = 2 \ * CV_DIST_L2 (3x 3) a=0.955, b=1.3693 \ * CV_DIST_L2 (5x 5) a=1, b=1.4, c=2.1969 \ * ============== =================== ======================

* *

Typically, for a fast, coarse distance estimation CV_DIST_L2, a * 3x 3 mask is used. For a more accurate distance estimation * CV_DIST_L2, a 5x 5 mask or the precise algorithm is * used. * Note that both the precise and the approximate algorithms are linear on the * number of pixels.

* *

The second variant of the function does not only compute the minimum distance * for each pixel (x, y) but also identifies the nearest connected * component consisting of zero pixels (labelType==DIST_LABEL_CCOMP) * or the nearest zero pixel (labelType==DIST_LABEL_PIXEL). Index * of the component/pixel is stored in labels(x, y). * When labelType==DIST_LABEL_CCOMP, the function automatically * finds connected components of zero pixels in the input image and marks them * with distinct labels. When labelType==DIST_LABEL_CCOMP, the * function scans through the input image and marks all the zero pixels with * distinct labels.

* *

In this mode, the complexity is still linear. * That is, the function provides a very fast way to compute the Voronoi diagram * for a binary image. * Currently, the second variant can use only the approximate distance transform * algorithm, i.e. maskSize=CV_DIST_MASK_PRECISE is not supported * yet.

* *

Note:

*
    *
  • An example on using the distance transform can be found at * opencv_source_code/samples/cpp/distrans.cpp *
  • (Python) An example on using the distance transform can be found at * opencv_source/samples/python2/distrans.py *
* * @param src 8-bit, single-channel (binary) source image. * @param dst Output image with calculated distances. It is a 32-bit * floating-point, single-channel image of the same size as src. * @param labels Optional output 2D array of labels (the discrete Voronoi * diagram). It has the type CV_32SC1 and the same size as * src. See the details below. * @param distanceType Type of distance. It can be CV_DIST_L1, * CV_DIST_L2, or CV_DIST_C. * @param maskSize Size of the distance transform mask. It can be 3, 5, or * CV_DIST_MASK_PRECISE (the latter option is only supported by the * first function). In case of the CV_DIST_L1 or CV_DIST_C * distance type, the parameter is forced to 3 because a 3x 3 mask * gives the same result as 5x 5 or any larger aperture. * * @see org.opencv.imgproc.Imgproc.distanceTransform */ public static void distanceTransformWithLabels(Mat src, Mat dst, Mat labels, int distanceType, int maskSize) { distanceTransformWithLabels_1(src.nativeObj, dst.nativeObj, labels.nativeObj, distanceType, maskSize); return; } // // C++: void drawContours(Mat& image, vector_vector_Point contours, int contourIdx, Scalar color, int thickness = 1, int lineType = 8, Mat hierarchy = Mat(), int maxLevel = INT_MAX, Point offset = Point()) // /** *

Draws contours outlines or filled contours.

* *

The function draws contour outlines in the image if thickness >= 0 * or fills the area bounded by the contours ifthickness<0. The * example below shows how to retrieve connected components from the binary * image and label them:

* *

// C++ code:

* *

#include "cv.h"

* *

#include "highgui.h"

* *

using namespace cv;

* *

int main(int argc, char argv)

* * *

Mat src;

* *

// the first command-line parameter must be a filename of the binary

* *

// (black-n-white) image

* *

if(argc != 2 || !(src=imread(argv[1], 0)).data)

* *

return -1;

* *

Mat dst = Mat.zeros(src.rows, src.cols, CV_8UC3);

* *

src = src > 1;

* *

namedWindow("Source", 1);

* *

imshow("Source", src);

* *

vector > contours;

* *

vector hierarchy;

* *

findContours(src, contours, hierarchy,

* *

CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);

* *

// iterate through all the top-level contours,

* *

// draw each connected component with its own random color

* *

int idx = 0;

* *

for(; idx >= 0; idx = hierarchy[idx][0])

* * *

Scalar color(rand()&255, rand()&255, rand()&255);

* *

drawContours(dst, contours, idx, color, CV_FILLED, 8, hierarchy);

* * *

namedWindow("Components", 1);

* *

imshow("Components", dst);

* *

waitKey(0);

* * *

Note:

*
    *
  • An example using the drawContour functionality can be found at * opencv_source_code/samples/cpp/contours2.cpp *
  • An example using drawContours to clean up a background segmentation * result at opencv_source_code/samples/cpp/segment_objects.cpp *
  • (Python) An example using the drawContour functionality can be found * at opencv_source/samples/python2/contours.py *
* * @param image Destination image. * @param contours All the input contours. Each contour is stored as a point * vector. * @param contourIdx Parameter indicating a contour to draw. If it is negative, * all the contours are drawn. * @param color Color of the contours. * @param thickness Thickness of lines the contours are drawn with. If it is * negative (for example, thickness=CV_FILLED), the contour * interiors are drawn. * @param lineType Line connectivity. See "line" for details. * @param hierarchy Optional information about hierarchy. It is only needed if * you want to draw only some of the contours (see maxLevel). * @param maxLevel Maximal level for drawn contours. If it is 0, only the * specified contour is drawn. If it is 1, the function draws the contour(s) and * all the nested contours. If it is 2, the function draws the contours, all the * nested contours, all the nested-to-nested contours, and so on. This parameter * is only taken into account when there is hierarchy available. * @param offset Optional contour shift parameter. Shift all the drawn contours * by the specified offset=(dx,dy). * * @see org.opencv.imgproc.Imgproc.drawContours */ public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy, int maxLevel, Point offset) { List contours_tmplm = new ArrayList((contours != null) ? contours.size() : 0); Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); drawContours_0(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj, maxLevel, offset.x, offset.y); return; } /** *

Draws contours outlines or filled contours.

* *

The function draws contour outlines in the image if thickness >= 0 * or fills the area bounded by the contours ifthickness<0. The * example below shows how to retrieve connected components from the binary * image and label them:

* *

// C++ code:

* *

#include "cv.h"

* *

#include "highgui.h"

* *

using namespace cv;

* *

int main(int argc, char argv)

* * *

Mat src;

* *

// the first command-line parameter must be a filename of the binary

* *

// (black-n-white) image

* *

if(argc != 2 || !(src=imread(argv[1], 0)).data)

* *

return -1;

* *

Mat dst = Mat.zeros(src.rows, src.cols, CV_8UC3);

* *

src = src > 1;

* *

namedWindow("Source", 1);

* *

imshow("Source", src);

* *

vector > contours;

* *

vector hierarchy;

* *

findContours(src, contours, hierarchy,

* *

CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);

* *

// iterate through all the top-level contours,

* *

// draw each connected component with its own random color

* *

int idx = 0;

* *

for(; idx >= 0; idx = hierarchy[idx][0])

* * *

Scalar color(rand()&255, rand()&255, rand()&255);

* *

drawContours(dst, contours, idx, color, CV_FILLED, 8, hierarchy);

* * *

namedWindow("Components", 1);

* *

imshow("Components", dst);

* *

waitKey(0);

* * *

Note:

*
    *
  • An example using the drawContour functionality can be found at * opencv_source_code/samples/cpp/contours2.cpp *
  • An example using drawContours to clean up a background segmentation * result at opencv_source_code/samples/cpp/segment_objects.cpp *
  • (Python) An example using the drawContour functionality can be found * at opencv_source/samples/python2/contours.py *
* * @param image Destination image. * @param contours All the input contours. Each contour is stored as a point * vector. * @param contourIdx Parameter indicating a contour to draw. If it is negative, * all the contours are drawn. * @param color Color of the contours. * @param thickness Thickness of lines the contours are drawn with. If it is * negative (for example, thickness=CV_FILLED), the contour * interiors are drawn. * * @see org.opencv.imgproc.Imgproc.drawContours */ public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness) { List contours_tmplm = new ArrayList((contours != null) ? contours.size() : 0); Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); drawContours_1(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness); return; } /** *

Draws contours outlines or filled contours.

* *

The function draws contour outlines in the image if thickness >= 0 * or fills the area bounded by the contours ifthickness<0. The * example below shows how to retrieve connected components from the binary * image and label them:

* *

// C++ code:

* *

#include "cv.h"

* *

#include "highgui.h"

* *

using namespace cv;

* *

int main(int argc, char argv)

* * *

Mat src;

* *

// the first command-line parameter must be a filename of the binary

* *

// (black-n-white) image

* *

if(argc != 2 || !(src=imread(argv[1], 0)).data)

* *

return -1;

* *

Mat dst = Mat.zeros(src.rows, src.cols, CV_8UC3);

* *

src = src > 1;

* *

namedWindow("Source", 1);

* *

imshow("Source", src);

* *

vector > contours;

* *

vector hierarchy;

* *

findContours(src, contours, hierarchy,

* *

CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);

* *

// iterate through all the top-level contours,

* *

// draw each connected component with its own random color

* *

int idx = 0;

* *

for(; idx >= 0; idx = hierarchy[idx][0])

* * *

Scalar color(rand()&255, rand()&255, rand()&255);

* *

drawContours(dst, contours, idx, color, CV_FILLED, 8, hierarchy);

* * *

namedWindow("Components", 1);

* *

imshow("Components", dst);

* *

waitKey(0);

* * *

Note:

*
    *
  • An example using the drawContour functionality can be found at * opencv_source_code/samples/cpp/contours2.cpp *
  • An example using drawContours to clean up a background segmentation * result at opencv_source_code/samples/cpp/segment_objects.cpp *
  • (Python) An example using the drawContour functionality can be found * at opencv_source/samples/python2/contours.py *
* * @param image Destination image. * @param contours All the input contours. Each contour is stored as a point * vector. * @param contourIdx Parameter indicating a contour to draw. If it is negative, * all the contours are drawn. * @param color Color of the contours. * * @see org.opencv.imgproc.Imgproc.drawContours */ public static void drawContours(Mat image, List contours, int contourIdx, Scalar color) { List contours_tmplm = new ArrayList((contours != null) ? contours.size() : 0); Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); drawContours_2(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3]); return; } // // C++: void equalizeHist(Mat src, Mat& dst) // /** *

Equalizes the histogram of a grayscale image.

* *

The function equalizes the histogram of the input image using the following * algorithm:

*
    *
  • Calculate the histogram H for src. *
  • Normalize the histogram so that the sum of histogram bins is 255. *
  • Compute the integral of the histogram: *
* *

H'_i = sum(by: 0 <= j < i) H(j)

* *
    *
  • *
*

Transform the image using H' as a look-up table: dst(x,y) = * H'(src(x,y))

* *

The algorithm normalizes the brightness and increases the contrast of the * image.

* * @param src Source 8-bit single channel image. * @param dst Destination image of the same size and type as src. * * @see org.opencv.imgproc.Imgproc.equalizeHist */ public static void equalizeHist(Mat src, Mat dst) { equalizeHist_0(src.nativeObj, dst.nativeObj); return; } // // C++: void erode(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) // /** *

Erodes an image by using a specific structuring element.

* *

The function erodes the source image using the specified structuring element * that determines the shape of a pixel neighborhood over which the minimum is * taken:

* *

dst(x,y) = min _((x',y'): element(x',y') != 0) src(x+x',y+y')

* *

The function supports the in-place mode. Erosion can be applied several * (iterations) times. In case of multi-channel images, each * channel is processed independently.

* *

Note:

*
    *
  • An example using the morphological erode operation can be found at * opencv_source_code/samples/cpp/morphology2.cpp *
* * @param src input image; the number of channels can be arbitrary, but the * depth should be one of CV_8U, CV_16U, * CV_16S, CV_32F" or CV_64F". * @param dst output image of the same size and type as src. * @param kernel a kernel * @param anchor position of the anchor within the element; default value * (-1, -1) means that the anchor is at the element center. * @param iterations number of times erosion is applied. * @param borderType pixel extrapolation method (see "borderInterpolate" for * details). * @param borderValue border value in case of a constant border (see * "createMorphologyFilter" for details). * * @see org.opencv.imgproc.Imgproc.erode * @see org.opencv.imgproc.Imgproc#morphologyEx * @see org.opencv.imgproc.Imgproc#dilate */ public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) { erode_0(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); return; } /** *

Erodes an image by using a specific structuring element.

* *

The function erodes the source image using the specified structuring element * that determines the shape of a pixel neighborhood over which the minimum is * taken:

* *

dst(x,y) = min _((x',y'): element(x',y') != 0) src(x+x',y+y')

* *

The function supports the in-place mode. Erosion can be applied several * (iterations) times. In case of multi-channel images, each * channel is processed independently.

* *

Note:

*
    *
  • An example using the morphological erode operation can be found at * opencv_source_code/samples/cpp/morphology2.cpp *
* * @param src input image; the number of channels can be arbitrary, but the * depth should be one of CV_8U, CV_16U, * CV_16S, CV_32F" or CV_64F". * @param dst output image of the same size and type as src. * @param kernel a kernel * @param anchor position of the anchor within the element; default value * (-1, -1) means that the anchor is at the element center. * @param iterations number of times erosion is applied. * * @see org.opencv.imgproc.Imgproc.erode * @see org.opencv.imgproc.Imgproc#morphologyEx * @see org.opencv.imgproc.Imgproc#dilate */ public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations) { erode_1(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations); return; } /** *

Erodes an image by using a specific structuring element.

* *

The function erodes the source image using the specified structuring element * that determines the shape of a pixel neighborhood over which the minimum is * taken:

* *

dst(x,y) = min _((x',y'): element(x',y') != 0) src(x+x',y+y')

* *

The function supports the in-place mode. Erosion can be applied several * (iterations) times. In case of multi-channel images, each * channel is processed independently.

* *

Note:

*
    *
  • An example using the morphological erode operation can be found at * opencv_source_code/samples/cpp/morphology2.cpp *
* * @param src input image; the number of channels can be arbitrary, but the * depth should be one of CV_8U, CV_16U, * CV_16S, CV_32F" or CV_64F". * @param dst output image of the same size and type as src. * @param kernel a kernel * * @see org.opencv.imgproc.Imgproc.erode * @see org.opencv.imgproc.Imgproc#morphologyEx * @see org.opencv.imgproc.Imgproc#dilate */ public static void erode(Mat src, Mat dst, Mat kernel) { erode_2(src.nativeObj, dst.nativeObj, kernel.nativeObj); return; } // // C++: void filter2D(Mat src, Mat& dst, int ddepth, Mat kernel, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) // /** *

Convolves an image with the kernel.

* *

The function applies an arbitrary linear filter to an image. In-place * operation is supported. When the aperture is partially outside the image, the * function interpolates outlier pixel values according to the specified border * mode.

* *

The function does actually compute correlation, not the convolution:

* *

dst(x,y) = sum(by: 0 <= x' < kernel.cols, 0 <= y' < kernel.rows) * kernel(x',y')* src(x+x'- anchor.x,y+y'- anchor.y)

* *

That is, the kernel is not mirrored around the anchor point. If you need a * real convolution, flip the kernel using "flip" and set the new anchor to * (kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1).

* *

The function uses the DFT-based algorithm in case of sufficiently large * kernels (~11 x 11 or larger) and the direct algorithm (that uses * the engine retrieved by "createLinearFilter") for small kernels.

* * @param src input image. * @param dst output image of the same size and the same number of channels as * src. * @param ddepth desired depth of the destination image; if it is negative, it * will be the same as src.depth(); the following combinations of * src.depth() and ddepth are supported: *
    *
  • src.depth() = CV_8U, ddepth = * -1/CV_16S/CV_32F/CV_64F *
  • src.depth() = CV_16U/CV_16S, * ddepth = -1/CV_32F/CV_64F *
  • src.depth() = CV_32F, ddepth = * -1/CV_32F/CV_64F *
  • src.depth() = CV_64F, ddepth = * -1/CV_64F *
* *

when ddepth=-1, the output image will have the same depth as the * source.

* @param kernel convolution kernel (or rather a correlation kernel), a * single-channel floating point matrix; if you want to apply different kernels * to different channels, split the image into separate color planes using * "split" and process them individually. * @param anchor anchor of the kernel that indicates the relative position of a * filtered point within the kernel; the anchor should lie within the kernel; * default value (-1,-1) means that the anchor is at the kernel center. * @param delta optional value added to the filtered pixels before storing them * in dst. * @param borderType pixel extrapolation method (see "borderInterpolate" for * details). * * @see org.opencv.imgproc.Imgproc.filter2D * @see org.opencv.imgproc.Imgproc#matchTemplate * @see org.opencv.core.Core#dft * @see org.opencv.imgproc.Imgproc#sepFilter2D */ public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta, int borderType) { filter2D_0(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y, delta, borderType); return; } /** *

Convolves an image with the kernel.

* *

The function applies an arbitrary linear filter to an image. In-place * operation is supported. When the aperture is partially outside the image, the * function interpolates outlier pixel values according to the specified border * mode.

* *

The function does actually compute correlation, not the convolution:

* *

dst(x,y) = sum(by: 0 <= x' < kernel.cols, 0 <= y' < kernel.rows) * kernel(x',y')* src(x+x'- anchor.x,y+y'- anchor.y)

* *

That is, the kernel is not mirrored around the anchor point. If you need a * real convolution, flip the kernel using "flip" and set the new anchor to * (kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1).

* *

The function uses the DFT-based algorithm in case of sufficiently large * kernels (~11 x 11 or larger) and the direct algorithm (that uses * the engine retrieved by "createLinearFilter") for small kernels.

* * @param src input image. * @param dst output image of the same size and the same number of channels as * src. * @param ddepth desired depth of the destination image; if it is negative, it * will be the same as src.depth(); the following combinations of * src.depth() and ddepth are supported: *
    *
  • src.depth() = CV_8U, ddepth = * -1/CV_16S/CV_32F/CV_64F *
  • src.depth() = CV_16U/CV_16S, * ddepth = -1/CV_32F/CV_64F *
  • src.depth() = CV_32F, ddepth = * -1/CV_32F/CV_64F *
  • src.depth() = CV_64F, ddepth = * -1/CV_64F *
* *

when ddepth=-1, the output image will have the same depth as the * source.

* @param kernel convolution kernel (or rather a correlation kernel), a * single-channel floating point matrix; if you want to apply different kernels * to different channels, split the image into separate color planes using * "split" and process them individually. * @param anchor anchor of the kernel that indicates the relative position of a * filtered point within the kernel; the anchor should lie within the kernel; * default value (-1,-1) means that the anchor is at the kernel center. * @param delta optional value added to the filtered pixels before storing them * in dst. * * @see org.opencv.imgproc.Imgproc.filter2D * @see org.opencv.imgproc.Imgproc#matchTemplate * @see org.opencv.core.Core#dft * @see org.opencv.imgproc.Imgproc#sepFilter2D */ public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta) { filter2D_1(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y, delta); return; } /** *

Convolves an image with the kernel.

* *

The function applies an arbitrary linear filter to an image. In-place * operation is supported. When the aperture is partially outside the image, the * function interpolates outlier pixel values according to the specified border * mode.

* *

The function does actually compute correlation, not the convolution:

* *

dst(x,y) = sum(by: 0 <= x' < kernel.cols, 0 <= y' < kernel.rows) * kernel(x',y')* src(x+x'- anchor.x,y+y'- anchor.y)

* *

That is, the kernel is not mirrored around the anchor point. If you need a * real convolution, flip the kernel using "flip" and set the new anchor to * (kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1).

* *

The function uses the DFT-based algorithm in case of sufficiently large * kernels (~11 x 11 or larger) and the direct algorithm (that uses * the engine retrieved by "createLinearFilter") for small kernels.

* * @param src input image. * @param dst output image of the same size and the same number of channels as * src. * @param ddepth desired depth of the destination image; if it is negative, it * will be the same as src.depth(); the following combinations of * src.depth() and ddepth are supported: *
    *
  • src.depth() = CV_8U, ddepth = * -1/CV_16S/CV_32F/CV_64F *
  • src.depth() = CV_16U/CV_16S, * ddepth = -1/CV_32F/CV_64F *
  • src.depth() = CV_32F, ddepth = * -1/CV_32F/CV_64F *
  • src.depth() = CV_64F, ddepth = * -1/CV_64F *
* *

when ddepth=-1, the output image will have the same depth as the * source.

* @param kernel convolution kernel (or rather a correlation kernel), a * single-channel floating point matrix; if you want to apply different kernels * to different channels, split the image into separate color planes using * "split" and process them individually. * * @see org.opencv.imgproc.Imgproc.filter2D * @see org.opencv.imgproc.Imgproc#matchTemplate * @see org.opencv.core.Core#dft * @see org.opencv.imgproc.Imgproc#sepFilter2D */ public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel) { filter2D_2(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj); return; } // // C++: void findContours(Mat& image, vector_vector_Point& contours, Mat& hierarchy, int mode, int method, Point offset = Point()) // /** *

Finds contours in a binary image.

* *

The function retrieves contours from the binary image using the algorithm * [Suzuki85]. The contours are a useful tool for shape analysis and object * detection and recognition. See squares.c in the OpenCV sample * directory.

* *

Note: Source image is modified by this function. Also, the * function does not take into account 1-pixel border of the image (it's filled * with 0's and used for neighbor analysis in the algorithm), therefore the * contours touching the image border will be clipped.

* *

Note: If you use the new Python interface then the CV_ prefix * has to be omitted in contour retrieval mode and contour approximation method * parameters (for example, use cv2.RETR_LIST and cv2.CHAIN_APPROX_NONE * parameters). If you use the old Python interface then these parameters have * the CV_ prefix (for example, use cv.CV_RETR_LIST * and cv.CV_CHAIN_APPROX_NONE).

* *

Note:

*
    *
  • An example using the findContour functionality can be found at * opencv_source_code/samples/cpp/contours2.cpp *
  • An example using findContours to clean up a background segmentation * result at opencv_source_code/samples/cpp/segment_objects.cpp *
  • (Python) An example using the findContour functionality can be found * at opencv_source/samples/python2/contours.py *
  • (Python) An example of detecting squares in an image can be found at * opencv_source/samples/python2/squares.py *
* * @param image Source, an 8-bit single-channel image. Non-zero pixels are * treated as 1's. Zero pixels remain 0's, so the image is treated as * binary. You can use "compare", "inRange", "threshold", * "adaptiveThreshold", "Canny", and others to create a binary image out of a * grayscale or color one. The function modifies the image while * extracting the contours. If mode equals to CV_RETR_CCOMP or * CV_RETR_FLOODFILL, the input can also be a 32-bit integer image * of labels (CV_32SC1). * @param contours Detected contours. Each contour is stored as a vector of * points. * @param hierarchy Optional output vector, containing information about the * image topology. It has as many elements as the number of contours. For each * i-th contour contours[i], the elements hierarchy[i][0], * hiearchy[i][1], hiearchy[i][2], and * hiearchy[i][3] are set to 0-based indices in contours * of the next and previous contours at the same hierarchical level, the first * child contour and the parent contour, respectively. If for the contour * i there are no next, previous, parent, or nested contours, the * corresponding elements of hierarchy[i] will be negative. * @param mode Contour retrieval mode (if you use Python see also a note below). *
    *
  • CV_RETR_EXTERNAL retrieves only the extreme outer contours. It sets * hierarchy[i][2]=hierarchy[i][3]=-1 for all the contours. *
  • CV_RETR_LIST retrieves all of the contours without establishing any * hierarchical relationships. *
  • CV_RETR_CCOMP retrieves all of the contours and organizes them into a * two-level hierarchy. At the top level, there are external boundaries of the * components. At the second level, there are boundaries of the holes. If there * is another contour inside a hole of a connected component, it is still put at * the top level. *
  • CV_RETR_TREE retrieves all of the contours and reconstructs a full * hierarchy of nested contours. This full hierarchy is built and shown in the * OpenCV contours.c demo. *
* @param method Contour approximation method (if you use Python see also a note * below). *
    *
  • CV_CHAIN_APPROX_NONE stores absolutely all the contour points. That * is, any 2 subsequent points (x1,y1) and (x2,y2) of * the contour will be either horizontal, vertical or diagonal neighbors, that * is, max(abs(x1-x2),abs(y2-y1))==1. *
  • CV_CHAIN_APPROX_SIMPLE compresses horizontal, vertical, and diagonal * segments and leaves only their end points. For example, an up-right * rectangular contour is encoded with 4 points. *
  • CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS applies one of the * flavors of the Teh-Chin chain approximation algorithm. See [TehChin89] for * details. *
* @param offset Optional offset by which every contour point is shifted. This * is useful if the contours are extracted from the image ROI and then they * should be analyzed in the whole image context. * * @see org.opencv.imgproc.Imgproc.findContours */ public static void findContours(Mat image, List contours, Mat hierarchy, int mode, int method, Point offset) { Mat contours_mat = new Mat(); findContours_0(image.nativeObj, contours_mat.nativeObj, hierarchy.nativeObj, mode, method, offset.x, offset.y); Converters.Mat_to_vector_vector_Point(contours_mat, contours); return; } /** *

Finds contours in a binary image.

* *

The function retrieves contours from the binary image using the algorithm * [Suzuki85]. The contours are a useful tool for shape analysis and object * detection and recognition. See squares.c in the OpenCV sample * directory.

* *

Note: Source image is modified by this function. Also, the * function does not take into account 1-pixel border of the image (it's filled * with 0's and used for neighbor analysis in the algorithm), therefore the * contours touching the image border will be clipped.

* *

Note: If you use the new Python interface then the CV_ prefix * has to be omitted in contour retrieval mode and contour approximation method * parameters (for example, use cv2.RETR_LIST and cv2.CHAIN_APPROX_NONE * parameters). If you use the old Python interface then these parameters have * the CV_ prefix (for example, use cv.CV_RETR_LIST * and cv.CV_CHAIN_APPROX_NONE).

* *

Note:

*
    *
  • An example using the findContour functionality can be found at * opencv_source_code/samples/cpp/contours2.cpp *
  • An example using findContours to clean up a background segmentation * result at opencv_source_code/samples/cpp/segment_objects.cpp *
  • (Python) An example using the findContour functionality can be found * at opencv_source/samples/python2/contours.py *
  • (Python) An example of detecting squares in an image can be found at * opencv_source/samples/python2/squares.py *
* * @param image Source, an 8-bit single-channel image. Non-zero pixels are * treated as 1's. Zero pixels remain 0's, so the image is treated as * binary. You can use "compare", "inRange", "threshold", * "adaptiveThreshold", "Canny", and others to create a binary image out of a * grayscale or color one. The function modifies the image while * extracting the contours. If mode equals to CV_RETR_CCOMP or * CV_RETR_FLOODFILL, the input can also be a 32-bit integer image * of labels (CV_32SC1). * @param contours Detected contours. Each contour is stored as a vector of * points. * @param hierarchy Optional output vector, containing information about the * image topology. It has as many elements as the number of contours. For each * i-th contour contours[i], the elements hierarchy[i][0], * hiearchy[i][1], hiearchy[i][2], and * hiearchy[i][3] are set to 0-based indices in contours * of the next and previous contours at the same hierarchical level, the first * child contour and the parent contour, respectively. If for the contour * i there are no next, previous, parent, or nested contours, the * corresponding elements of hierarchy[i] will be negative. * @param mode Contour retrieval mode (if you use Python see also a note below). *
    *
  • CV_RETR_EXTERNAL retrieves only the extreme outer contours. It sets * hierarchy[i][2]=hierarchy[i][3]=-1 for all the contours. *
  • CV_RETR_LIST retrieves all of the contours without establishing any * hierarchical relationships. *
  • CV_RETR_CCOMP retrieves all of the contours and organizes them into a * two-level hierarchy. At the top level, there are external boundaries of the * components. At the second level, there are boundaries of the holes. If there * is another contour inside a hole of a connected component, it is still put at * the top level. *
  • CV_RETR_TREE retrieves all of the contours and reconstructs a full * hierarchy of nested contours. This full hierarchy is built and shown in the * OpenCV contours.c demo. *
* @param method Contour approximation method (if you use Python see also a note * below). *
    *
  • CV_CHAIN_APPROX_NONE stores absolutely all the contour points. That * is, any 2 subsequent points (x1,y1) and (x2,y2) of * the contour will be either horizontal, vertical or diagonal neighbors, that * is, max(abs(x1-x2),abs(y2-y1))==1. *
  • CV_CHAIN_APPROX_SIMPLE compresses horizontal, vertical, and diagonal * segments and leaves only their end points. For example, an up-right * rectangular contour is encoded with 4 points. *
  • CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS applies one of the * flavors of the Teh-Chin chain approximation algorithm. See [TehChin89] for * details. *
* * @see org.opencv.imgproc.Imgproc.findContours */ public static void findContours(Mat image, List contours, Mat hierarchy, int mode, int method) { Mat contours_mat = new Mat(); findContours_1(image.nativeObj, contours_mat.nativeObj, hierarchy.nativeObj, mode, method); Converters.Mat_to_vector_vector_Point(contours_mat, contours); return; } // // C++: RotatedRect fitEllipse(vector_Point2f points) // /** *

Fits an ellipse around a set of 2D points.

* *

The function calculates the ellipse that fits (in a least-squares sense) a * set of 2D points best of all. It returns the rotated rectangle in which the * ellipse is inscribed. The algorithm [Fitzgibbon95] is used. * Developer should keep in mind that it is possible that the returned * ellipse/rotatedRect data contains negative indices, due to the data points * being close to the border of the containing Mat element.

* *

Note:

*
    *
  • An example using the fitEllipse technique can be found at * opencv_source_code/samples/cpp/fitellipse.cpp *
* * @param points Input 2D point set, stored in: *
    *
  • std.vector<> or Mat (C++ interface) *
  • CvSeq* or CvMat* (C interface) *
  • Nx2 numpy array (Python interface) *
* * @see org.opencv.imgproc.Imgproc.fitEllipse */ public static RotatedRect fitEllipse(MatOfPoint2f points) { Mat points_mat = points; RotatedRect retVal = new RotatedRect(fitEllipse_0(points_mat.nativeObj)); return retVal; } // // C++: void fitLine(Mat points, Mat& line, int distType, double param, double reps, double aeps) // /** *

Fits a line to a 2D or 3D point set.

* *

The function fitLine fits a line to a 2D or 3D point set by * minimizing sum_i rho(r_i) where r_i is a distance between * the i^(th) point, the line and rho(r) is a distance * function, one of the following:

*
    *
  • distType=CV_DIST_L2 *
* *

rho(r) = r^2/2(the simplest and the fastest least-squares method)

* *
    *
  • distType=CV_DIST_L1 *
* *

rho(r) = r

* *
    *
  • distType=CV_DIST_L12 *
* *

rho(r) = 2 * (sqrt(1 + frac(r^2)2) - 1)

* *
    *
  • distType=CV_DIST_FAIR *
* *

rho(r) = C^2 * ((r)/(C) - log((1 + (r)/(C)))) where C=1.3998

* *
    *
  • distType=CV_DIST_WELSCH *
* *

rho(r) = (C^2)/2 * (1 - exp((-((r)/(C))^2))) where C=2.9846

* *
    *
  • distType=CV_DIST_HUBER *
* *

rho(r) = r^2/2 if r < C; C * (r-C/2) otherwise where C=1.345

* *

The algorithm is based on the M-estimator (http://en.wikipedia.org/wiki/M-estimator) * technique that iteratively fits the line using the weighted least-squares * algorithm. After each iteration the weights w_i are adjusted to be * inversely proportional to rho(r_i)... Sample code:

*
    *
  • (Python) An example of robust line fitting can be found at * opencv_source_code/samples/python2/fitline.py *
* * @param points Input vector of 2D or 3D points, stored in std.vector<> * or Mat. * @param line Output line parameters. In case of 2D fitting, it should be a * vector of 4 elements (like Vec4f) - (vx, vy, x0, * y0), where (vx, vy) is a normalized vector collinear to * the line and (x0, y0) is a point on the line. In case of 3D * fitting, it should be a vector of 6 elements (like Vec6f) - * (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a * normalized vector collinear to the line and (x0, y0, z0) is a * point on the line. * @param distType Distance used by the M-estimator (see the discussion below). * @param param Numerical parameter (C) for some types of * distances. If it is 0, an optimal value is chosen. * @param reps Sufficient accuracy for the radius (distance between the * coordinate origin and the line). * @param aeps Sufficient accuracy for the angle. 0.01 would be a good default * value for reps and aeps. * * @see org.opencv.imgproc.Imgproc.fitLine */ public static void fitLine(Mat points, Mat line, int distType, double param, double reps, double aeps) { fitLine_0(points.nativeObj, line.nativeObj, distType, param, reps, aeps); return; } // // C++: int floodFill(Mat& image, Mat& mask, Point seedPoint, Scalar newVal, Rect* rect = 0, Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), int flags = 4) // /** *

Fills a connected component with the given color.

* *

The functions floodFill fill a connected component starting from * the seed point with the specified color. The connectivity is determined by * the color/brightness closeness of the neighbor pixels. The pixel at * (x,y) is considered to belong to the repainted domain if:

*
    *
  • src(x',y')- loDiff <= src(x,y) <= src(x',y')+ upDiff *
* *

in case of a grayscale image and floating range

*
    *
  • src(seedPoint.x, seedPoint.y)- loDiff <= src(x,y) <= * src(seedPoint.x, seedPoint.y)+ upDiff *
* *

in case of a grayscale image and fixed range

*
    *
  • src(x',y')_r- loDiff _r <= src(x,y)_r <= src(x',y')_r+ upDiff * _r, * * *
* *

src(x',y')_g- loDiff _g <= src(x,y)_g <= src(x',y')_g+ upDiff _g

* *

and

* *

src(x',y')_b- loDiff _b <= src(x,y)_b <= src(x',y')_b+ upDiff _b

* *

in case of a color image and floating range

*
    *
  • src(seedPoint.x, seedPoint.y)_r- loDiff _r <= src(x,y)_r <= * src(seedPoint.x, seedPoint.y)_r+ upDiff _r, * * *
* *

src(seedPoint.x, seedPoint.y)_g- loDiff _g <= src(x,y)_g <= * src(seedPoint.x, seedPoint.y)_g+ upDiff _g

* *

and

* *

src(seedPoint.x, seedPoint.y)_b- loDiff _b <= src(x,y)_b <= * src(seedPoint.x, seedPoint.y)_b+ upDiff _b

* *

in case of a color image and fixed range

* *

where src(x',y') is the value of one of pixel neighbors that is * already known to belong to the component. That is, to be added to the * connected component, a color/brightness of the pixel should be close enough * to:

*
    *
  • Color/brightness of one of its neighbors that already belong to the * connected component in case of a floating range. *
  • Color/brightness of the seed point in case of a fixed range. *
* *

Use these functions to either mark a connected component with the specified * color in-place, or build a mask and then extract the contour, or copy the * region to another image, and so on.

* *

Note:

*
    *
  • An example using the FloodFill technique can be found at * opencv_source_code/samples/cpp/ffilldemo.cpp *
  • (Python) An example using the FloodFill technique can be found at * opencv_source_code/samples/python2/floodfill.cpp *
* * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It * is modified by the function unless the FLOODFILL_MASK_ONLY flag * is set in the second variant of the function. See the details below. * @param mask Operation mask that should be a single-channel 8-bit image, 2 * pixels wider and 2 pixels taller than image. Since this is both * an input and output parameter, you must take responsibility of initializing * it. Flood-filling cannot go across non-zero pixels in the input mask. For * example, an edge detector output can be used as a mask to stop filling at * edges. On output, pixels in the mask corresponding to filled pixels in the * image are set to 1 or to the a value specified in flags as * described below. It is therefore possible to use the same mask in multiple * calls to the function to make sure the filled areas do not overlap. * *

Note: Since the mask is larger than the filled image, a pixel (x, y) * in image corresponds to the pixel (x+1, y+1) in the * mask.

* @param seedPoint Starting point. * @param newVal New value of the repainted domain pixels. * @param rect Optional output parameter set by the function to the minimum * bounding rectangle of the repainted domain. * @param loDiff Maximal lower brightness/color difference between the currently * observed pixel and one of its neighbors belonging to the component, or a seed * pixel being added to the component. * @param upDiff Maximal upper brightness/color difference between the currently * observed pixel and one of its neighbors belonging to the component, or a seed * pixel being added to the component. * @param flags Operation flags. The first 8 bits contain a connectivity value. * The default value of 4 means that only the four nearest neighbor pixels * (those that share an edge) are considered. A connectivity value of 8 means * that the eight nearest neighbor pixels (those that share a corner) will be * considered. The next 8 bits (8-16) contain a value between 1 and 255 with * which to fill the mask (the default value is 1). For example, * 4 | (255 << 8) will consider 4 nearest neighbours and fill the * mask with a value of 255. The following additional options occupy higher bits * and therefore may be further combined with the connectivity and mask fill * values using bit-wise or (|): *
    *
  • FLOODFILL_FIXED_RANGE If set, the difference between the current pixel * and seed pixel is considered. Otherwise, the difference between neighbor * pixels is considered (that is, the range is floating). *
  • FLOODFILL_MASK_ONLY If set, the function does not change the image * (newVal is ignored), and only fills the mask with the value * specified in bits 8-16 of flags as described above. This option * only make sense in function variants that have the mask * parameter. *
* * @see org.opencv.imgproc.Imgproc.floodFill * @see org.opencv.imgproc.Imgproc#findContours */ public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff, Scalar upDiff, int flags) { double[] rect_out = new double[4]; int retVal = floodFill_0(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3], upDiff.val[0], upDiff.val[1], upDiff.val[2], upDiff.val[3], flags); if(rect!=null){ rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } return retVal; } /** *

Fills a connected component with the given color.

* *

The functions floodFill fill a connected component starting from * the seed point with the specified color. The connectivity is determined by * the color/brightness closeness of the neighbor pixels. The pixel at * (x,y) is considered to belong to the repainted domain if:

*
    *
  • src(x',y')- loDiff <= src(x,y) <= src(x',y')+ upDiff *
* *

in case of a grayscale image and floating range

*
    *
  • src(seedPoint.x, seedPoint.y)- loDiff <= src(x,y) <= * src(seedPoint.x, seedPoint.y)+ upDiff *
* *

in case of a grayscale image and fixed range

*
    *
  • src(x',y')_r- loDiff _r <= src(x,y)_r <= src(x',y')_r+ upDiff * _r, * * *
* *

src(x',y')_g- loDiff _g <= src(x,y)_g <= src(x',y')_g+ upDiff _g

* *

and

* *

src(x',y')_b- loDiff _b <= src(x,y)_b <= src(x',y')_b+ upDiff _b

* *

in case of a color image and floating range

*
    *
  • src(seedPoint.x, seedPoint.y)_r- loDiff _r <= src(x,y)_r <= * src(seedPoint.x, seedPoint.y)_r+ upDiff _r, * * *
* *

src(seedPoint.x, seedPoint.y)_g- loDiff _g <= src(x,y)_g <= * src(seedPoint.x, seedPoint.y)_g+ upDiff _g

* *

and

* *

src(seedPoint.x, seedPoint.y)_b- loDiff _b <= src(x,y)_b <= * src(seedPoint.x, seedPoint.y)_b+ upDiff _b

* *

in case of a color image and fixed range

* *

where src(x',y') is the value of one of pixel neighbors that is * already known to belong to the component. That is, to be added to the * connected component, a color/brightness of the pixel should be close enough * to:

*
    *
  • Color/brightness of one of its neighbors that already belong to the * connected component in case of a floating range. *
  • Color/brightness of the seed point in case of a fixed range. *
* *

Use these functions to either mark a connected component with the specified * color in-place, or build a mask and then extract the contour, or copy the * region to another image, and so on.

* *

Note:

*
    *
  • An example using the FloodFill technique can be found at * opencv_source_code/samples/cpp/ffilldemo.cpp *
  • (Python) An example using the FloodFill technique can be found at * opencv_source_code/samples/python2/floodfill.cpp *
* * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It * is modified by the function unless the FLOODFILL_MASK_ONLY flag * is set in the second variant of the function. See the details below. * @param mask Operation mask that should be a single-channel 8-bit image, 2 * pixels wider and 2 pixels taller than image. Since this is both * an input and output parameter, you must take responsibility of initializing * it. Flood-filling cannot go across non-zero pixels in the input mask. For * example, an edge detector output can be used as a mask to stop filling at * edges. On output, pixels in the mask corresponding to filled pixels in the * image are set to 1 or to the a value specified in flags as * described below. It is therefore possible to use the same mask in multiple * calls to the function to make sure the filled areas do not overlap. * *

Note: Since the mask is larger than the filled image, a pixel (x, y) * in image corresponds to the pixel (x+1, y+1) in the * mask.

* @param seedPoint Starting point. * @param newVal New value of the repainted domain pixels. * * @see org.opencv.imgproc.Imgproc.floodFill * @see org.opencv.imgproc.Imgproc#findContours */ public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal) { int retVal = floodFill_1(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3]); return retVal; } // // C++: Mat getAffineTransform(vector_Point2f src, vector_Point2f dst) // /** *

Calculates an affine transform from three pairs of the corresponding points.

* *

The function calculates the 2 x 3 matrix of an affine transform so * that:

* *

x'_i * y'_i = map_matrix * x_i * y_i * 1

* *

where

* *

dst(i)=(x'_i,y'_i),<BR>src(i)=(x_i, y_i),<BR>i=0,1,2

* * @param src Coordinates of triangle vertices in the source image. * @param dst Coordinates of the corresponding triangle vertices in the * destination image. * * @see org.opencv.imgproc.Imgproc.getAffineTransform * @see org.opencv.imgproc.Imgproc#warpAffine * @see org.opencv.core.Core#transform */ public static Mat getAffineTransform(MatOfPoint2f src, MatOfPoint2f dst) { Mat src_mat = src; Mat dst_mat = dst; Mat retVal = new Mat(getAffineTransform_0(src_mat.nativeObj, dst_mat.nativeObj)); return retVal; } // // C++: Mat getDefaultNewCameraMatrix(Mat cameraMatrix, Size imgsize = Size(), bool centerPrincipalPoint = false) // /** *

Returns the default new camera matrix.

* *

The function returns the camera matrix that is either an exact copy of the * input cameraMatrix (when centerPrinicipalPoint=false), * or the modified one (when centerPrincipalPoint=true).

* *

In the latter case, the new camera matrix will be:

* *

f_x 0(imgSize.width -1)*0.5 * 0 f_y(imgSize.height -1)*0.5 * 0 0 1,

* *

where f_x and f_y are (0,0) and (1,1) * elements of cameraMatrix, respectively.

* *

By default, the undistortion functions in OpenCV (see "initUndistortRectifyMap", * "undistort") do not move the principal point. However, when you work with * stereo, it is important to move the principal points in both views to the * same y-coordinate (which is required by most of stereo correspondence * algorithms), and may be to the same x-coordinate too. So, you can form the * new camera matrix for each view where the principal points are located at the * center.

* * @param cameraMatrix Input camera matrix. * @param imgsize Camera view image size in pixels. * @param centerPrincipalPoint Location of the principal point in the new camera * matrix. The parameter indicates whether this location should be at the image * center or not. * * @see org.opencv.imgproc.Imgproc.getDefaultNewCameraMatrix */ public static Mat getDefaultNewCameraMatrix(Mat cameraMatrix, Size imgsize, boolean centerPrincipalPoint) { Mat retVal = new Mat(getDefaultNewCameraMatrix_0(cameraMatrix.nativeObj, imgsize.width, imgsize.height, centerPrincipalPoint)); return retVal; } /** *

Returns the default new camera matrix.

* *

The function returns the camera matrix that is either an exact copy of the * input cameraMatrix (when centerPrinicipalPoint=false), * or the modified one (when centerPrincipalPoint=true).

* *

In the latter case, the new camera matrix will be:

* *

f_x 0(imgSize.width -1)*0.5 * 0 f_y(imgSize.height -1)*0.5 * 0 0 1,

* *

where f_x and f_y are (0,0) and (1,1) * elements of cameraMatrix, respectively.

* *

By default, the undistortion functions in OpenCV (see "initUndistortRectifyMap", * "undistort") do not move the principal point. However, when you work with * stereo, it is important to move the principal points in both views to the * same y-coordinate (which is required by most of stereo correspondence * algorithms), and may be to the same x-coordinate too. So, you can form the * new camera matrix for each view where the principal points are located at the * center.

* * @param cameraMatrix Input camera matrix. * * @see org.opencv.imgproc.Imgproc.getDefaultNewCameraMatrix */ public static Mat getDefaultNewCameraMatrix(Mat cameraMatrix) { Mat retVal = new Mat(getDefaultNewCameraMatrix_1(cameraMatrix.nativeObj)); return retVal; } // // C++: void getDerivKernels(Mat& kx, Mat& ky, int dx, int dy, int ksize, bool normalize = false, int ktype = CV_32F) // /** *

Returns filter coefficients for computing spatial image derivatives.

* *

The function computes and returns the filter coefficients for spatial image * derivatives. When ksize=CV_SCHARR, the Scharr 3 x 3 * kernels are generated (see "Scharr"). Otherwise, Sobel kernels are generated * (see "Sobel"). The filters are normally passed to "sepFilter2D" or to * "createSeparableLinearFilter".

* * @param kx Output matrix of row filter coefficients. It has the type * ktype. * @param ky Output matrix of column filter coefficients. It has the type * ktype. * @param dx Derivative order in respect of x. * @param dy Derivative order in respect of y. * @param ksize Aperture size. It can be CV_SCHARR, 1, 3, 5, or 7. * @param normalize Flag indicating whether to normalize (scale down) the filter * coefficients or not. Theoretically, the coefficients should have the * denominator =2^(ksize*2-dx-dy-2). If you are going to filter * floating-point images, you are likely to use the normalized kernels. But if * you compute derivatives of an 8-bit image, store the results in a 16-bit * image, and wish to preserve all the fractional bits, you may want to set * normalize=false. * @param ktype Type of filter coefficients. It can be CV_32f or * CV_64F. * * @see org.opencv.imgproc.Imgproc.getDerivKernels */ public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize, boolean normalize, int ktype) { getDerivKernels_0(kx.nativeObj, ky.nativeObj, dx, dy, ksize, normalize, ktype); return; } /** *

Returns filter coefficients for computing spatial image derivatives.

* *

The function computes and returns the filter coefficients for spatial image * derivatives. When ksize=CV_SCHARR, the Scharr 3 x 3 * kernels are generated (see "Scharr"). Otherwise, Sobel kernels are generated * (see "Sobel"). The filters are normally passed to "sepFilter2D" or to * "createSeparableLinearFilter".

* * @param kx Output matrix of row filter coefficients. It has the type * ktype. * @param ky Output matrix of column filter coefficients. It has the type * ktype. * @param dx Derivative order in respect of x. * @param dy Derivative order in respect of y. * @param ksize Aperture size. It can be CV_SCHARR, 1, 3, 5, or 7. * * @see org.opencv.imgproc.Imgproc.getDerivKernels */ public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize) { getDerivKernels_1(kx.nativeObj, ky.nativeObj, dx, dy, ksize); return; } // // C++: Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi = CV_PI*0.5, int ktype = CV_64F) // public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi, int ktype) { Mat retVal = new Mat(getGaborKernel_0(ksize.width, ksize.height, sigma, theta, lambd, gamma, psi, ktype)); return retVal; } public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma) { Mat retVal = new Mat(getGaborKernel_1(ksize.width, ksize.height, sigma, theta, lambd, gamma)); return retVal; } // // C++: Mat getGaussianKernel(int ksize, double sigma, int ktype = CV_64F) // /** *

Returns Gaussian filter coefficients.

* *

The function computes and returns the ksize x 1 matrix of Gaussian * filter coefficients:

* *

G_i= alpha *e^(-(i-(ksize -1)/2)^2/(2* sigma^2)),

* *

where i=0..ksize-1 and alpha is the scale factor chosen so * that sum_i G_i=1.

* *

Two of such generated kernels can be passed to "sepFilter2D" or to * "createSeparableLinearFilter". Those functions automatically recognize * smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and * handle them accordingly. You may also use the higher-level "GaussianBlur".

* * @param ksize Aperture size. It should be odd (ksize mod 2 = 1) and * positive. * @param sigma Gaussian standard deviation. If it is non-positive, it is * computed from ksize as sigma = 0.3*((ksize-1)*0.5 - 1) + * 0.8. * @param ktype Type of filter coefficients. It can be CV_32f or * CV_64F. * * @see org.opencv.imgproc.Imgproc.getGaussianKernel * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#sepFilter2D * @see org.opencv.imgproc.Imgproc#getStructuringElement * @see org.opencv.imgproc.Imgproc#getDerivKernels */ public static Mat getGaussianKernel(int ksize, double sigma, int ktype) { Mat retVal = new Mat(getGaussianKernel_0(ksize, sigma, ktype)); return retVal; } /** *

Returns Gaussian filter coefficients.

* *

The function computes and returns the ksize x 1 matrix of Gaussian * filter coefficients:

* *

G_i= alpha *e^(-(i-(ksize -1)/2)^2/(2* sigma^2)),

* *

where i=0..ksize-1 and alpha is the scale factor chosen so * that sum_i G_i=1.

* *

Two of such generated kernels can be passed to "sepFilter2D" or to * "createSeparableLinearFilter". Those functions automatically recognize * smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and * handle them accordingly. You may also use the higher-level "GaussianBlur".

* * @param ksize Aperture size. It should be odd (ksize mod 2 = 1) and * positive. * @param sigma Gaussian standard deviation. If it is non-positive, it is * computed from ksize as sigma = 0.3*((ksize-1)*0.5 - 1) + * 0.8. * * @see org.opencv.imgproc.Imgproc.getGaussianKernel * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#sepFilter2D * @see org.opencv.imgproc.Imgproc#getStructuringElement * @see org.opencv.imgproc.Imgproc#getDerivKernels */ public static Mat getGaussianKernel(int ksize, double sigma) { Mat retVal = new Mat(getGaussianKernel_1(ksize, sigma)); return retVal; } // // C++: Mat getPerspectiveTransform(Mat src, Mat dst) // /** *

Calculates a perspective transform from four pairs of the corresponding * points.

* *

The function calculates the 3 x 3 matrix of a perspective transform * so that:

* *

t_i x'_i * t_i y'_i * t_i = map_matrix * x_i * y_i * 1

* *

where

* *

dst(i)=(x'_i,y'_i),<BR>src(i)=(x_i, y_i),<BR>i=0,1,2,3

* * @param src Coordinates of quadrangle vertices in the source image. * @param dst Coordinates of the corresponding quadrangle vertices in the * destination image. * * @see org.opencv.imgproc.Imgproc.getPerspectiveTransform * @see org.opencv.calib3d.Calib3d#findHomography * @see org.opencv.core.Core#perspectiveTransform * @see org.opencv.imgproc.Imgproc#warpPerspective */ public static Mat getPerspectiveTransform(Mat src, Mat dst) { Mat retVal = new Mat(getPerspectiveTransform_0(src.nativeObj, dst.nativeObj)); return retVal; } // // C++: void getRectSubPix(Mat image, Size patchSize, Point2f center, Mat& patch, int patchType = -1) // /** *

Retrieves a pixel rectangle from an image with sub-pixel accuracy.

* *

The function getRectSubPix extracts pixels from src

* *

dst(x, y) = src(x + center.x - (dst.cols -1)*0.5, y + center.y - * (dst.rows -1)*0.5)

* *

where the values of the pixels at non-integer coordinates are retrieved using * bilinear interpolation. Every channel of multi-channel images is processed * independently. While the center of the rectangle must be inside the image, * parts of the rectangle may be outside. In this case, the replication border * mode (see "borderInterpolate") is used to extrapolate the pixel values * outside of the image.

* * @param image a image * @param patchSize Size of the extracted patch. * @param center Floating point coordinates of the center of the extracted * rectangle within the source image. The center must be inside the image. * @param patch a patch * @param patchType Depth of the extracted pixels. By default, they have the * same depth as src. * * @see org.opencv.imgproc.Imgproc.getRectSubPix * @see org.opencv.imgproc.Imgproc#warpAffine * @see org.opencv.imgproc.Imgproc#warpPerspective */ public static void getRectSubPix(Mat image, Size patchSize, Point center, Mat patch, int patchType) { getRectSubPix_0(image.nativeObj, patchSize.width, patchSize.height, center.x, center.y, patch.nativeObj, patchType); return; } /** *

Retrieves a pixel rectangle from an image with sub-pixel accuracy.

* *

The function getRectSubPix extracts pixels from src

* *

dst(x, y) = src(x + center.x - (dst.cols -1)*0.5, y + center.y - * (dst.rows -1)*0.5)

* *

where the values of the pixels at non-integer coordinates are retrieved using * bilinear interpolation. Every channel of multi-channel images is processed * independently. While the center of the rectangle must be inside the image, * parts of the rectangle may be outside. In this case, the replication border * mode (see "borderInterpolate") is used to extrapolate the pixel values * outside of the image.

* * @param image a image * @param patchSize Size of the extracted patch. * @param center Floating point coordinates of the center of the extracted * rectangle within the source image. The center must be inside the image. * @param patch a patch * * @see org.opencv.imgproc.Imgproc.getRectSubPix * @see org.opencv.imgproc.Imgproc#warpAffine * @see org.opencv.imgproc.Imgproc#warpPerspective */ public static void getRectSubPix(Mat image, Size patchSize, Point center, Mat patch) { getRectSubPix_1(image.nativeObj, patchSize.width, patchSize.height, center.x, center.y, patch.nativeObj); return; } // // C++: Mat getRotationMatrix2D(Point2f center, double angle, double scale) // /** *

Calculates an affine matrix of 2D rotation.

* *

The function calculates the following matrix:

* *

alpha beta(1- alpha) * center.x - beta * center.y * - beta alpha beta * center.x + (1- alpha) * center.y

* *

where

* *

alpha = scale * cos angle, * beta = scale * sin angle

* *

The transformation maps the rotation center to itself. If this is not the * target, adjust the shift.

* * @param center Center of the rotation in the source image. * @param angle Rotation angle in degrees. Positive values mean * counter-clockwise rotation (the coordinate origin is assumed to be the * top-left corner). * @param scale Isotropic scale factor. * * @see org.opencv.imgproc.Imgproc.getRotationMatrix2D * @see org.opencv.imgproc.Imgproc#warpAffine * @see org.opencv.imgproc.Imgproc#getAffineTransform * @see org.opencv.core.Core#transform */ public static Mat getRotationMatrix2D(Point center, double angle, double scale) { Mat retVal = new Mat(getRotationMatrix2D_0(center.x, center.y, angle, scale)); return retVal; } // // C++: Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)) // /** *

Returns a structuring element of the specified size and shape for * morphological operations.

* *

The function constructs and returns the structuring element that can be * further passed to "createMorphologyFilter", "erode", "dilate" or * "morphologyEx". But you can also construct an arbitrary binary mask yourself * and use it as the structuring element.

* *

Note: When using OpenCV 1.x C API, the created structuring element * IplConvKernel* element must be released in the end using * cvReleaseStructuringElement(&element).

* * @param shape Element shape that could be one of the following: *
    *
  • MORPH_RECT - a rectangular structuring element: *
* *

E_(ij)=1

* *
    *
  • MORPH_ELLIPSE - an elliptic structuring element, that is, a filled * ellipse inscribed into the rectangle Rect(0, 0, esize.width, * 0.esize.height) *
  • MORPH_CROSS - a cross-shaped structuring element: *
* *

E_(ij) = 1 if i=anchor.y or j=anchor.x; 0 otherwise

* *
    *
  • CV_SHAPE_CUSTOM - custom structuring element (OpenCV 1.x API) *
* @param ksize Size of the structuring element. * @param anchor Anchor position within the element. The default value (-1, * -1) means that the anchor is at the center. Note that only the shape of * a cross-shaped element depends on the anchor position. In other cases the * anchor just regulates how much the result of the morphological operation is * shifted. * * @see org.opencv.imgproc.Imgproc.getStructuringElement */ public static Mat getStructuringElement(int shape, Size ksize, Point anchor) { Mat retVal = new Mat(getStructuringElement_0(shape, ksize.width, ksize.height, anchor.x, anchor.y)); return retVal; } /** *

Returns a structuring element of the specified size and shape for * morphological operations.

* *

The function constructs and returns the structuring element that can be * further passed to "createMorphologyFilter", "erode", "dilate" or * "morphologyEx". But you can also construct an arbitrary binary mask yourself * and use it as the structuring element.

* *

Note: When using OpenCV 1.x C API, the created structuring element * IplConvKernel* element must be released in the end using * cvReleaseStructuringElement(&element).

* * @param shape Element shape that could be one of the following: *
    *
  • MORPH_RECT - a rectangular structuring element: *
* *

E_(ij)=1

* *
    *
  • MORPH_ELLIPSE - an elliptic structuring element, that is, a filled * ellipse inscribed into the rectangle Rect(0, 0, esize.width, * 0.esize.height) *
  • MORPH_CROSS - a cross-shaped structuring element: *
* *

E_(ij) = 1 if i=anchor.y or j=anchor.x; 0 otherwise

* *
    *
  • CV_SHAPE_CUSTOM - custom structuring element (OpenCV 1.x API) *
* @param ksize Size of the structuring element. * * @see org.opencv.imgproc.Imgproc.getStructuringElement */ public static Mat getStructuringElement(int shape, Size ksize) { Mat retVal = new Mat(getStructuringElement_1(shape, ksize.width, ksize.height)); return retVal; } // // C++: void goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask = Mat(), int blockSize = 3, bool useHarrisDetector = false, double k = 0.04) // /** *

Determines strong corners on an image.

* *

The function finds the most prominent corners in the image or in the * specified image region, as described in [Shi94]:

*
    *
  • Function calculates the corner quality measure at every source image * pixel using the "cornerMinEigenVal" or "cornerHarris". *
  • Function performs a non-maximum suppression (the local maximums in *3 * x 3* neighborhood are retained). *
  • The corners with the minimal eigenvalue less than qualityLevel * * max_(x,y) qualityMeasureMap(x,y) are rejected. *
  • The remaining corners are sorted by the quality measure in the * descending order. *
  • Function throws away each corner for which there is a stronger corner * at a distance less than maxDistance. *
* *

The function can be used to initialize a point-based tracker of an object.

* *

Note: If the function is called with different values A and * B of the parameter qualityLevel, and A * > {B}, the vector of returned corners with qualityLevel=A will * be the prefix of the output vector with qualityLevel=B.

* * @param image Input 8-bit or floating-point 32-bit, single-channel image. * @param corners Output vector of detected corners. * @param maxCorners Maximum number of corners to return. If there are more * corners than are found, the strongest of them is returned. * @param qualityLevel Parameter characterizing the minimal accepted quality of * image corners. The parameter value is multiplied by the best corner quality * measure, which is the minimal eigenvalue (see "cornerMinEigenVal") or the * Harris function response (see "cornerHarris"). The corners with the quality * measure less than the product are rejected. For example, if the best corner * has the quality measure = 1500, and the qualityLevel=0.01, then * all the corners with the quality measure less than 15 are rejected. * @param minDistance Minimum possible Euclidean distance between the returned * corners. * @param mask Optional region of interest. If the image is not empty (it needs * to have the type CV_8UC1 and the same size as image), * it specifies the region in which the corners are detected. * @param blockSize Size of an average block for computing a derivative * covariation matrix over each pixel neighborhood. See "cornerEigenValsAndVecs". * @param useHarrisDetector Parameter indicating whether to use a Harris * detector (see "cornerHarris") or "cornerMinEigenVal". * @param k Free parameter of the Harris detector. * * @see org.opencv.imgproc.Imgproc.goodFeaturesToTrack * @see org.opencv.imgproc.Imgproc#cornerHarris * @see org.opencv.video.Video#estimateRigidTransform * @see org.opencv.imgproc.Imgproc#cornerMinEigenVal * @see org.opencv.video.Video#calcOpticalFlowPyrLK */ public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, boolean useHarrisDetector, double k) { Mat corners_mat = corners; goodFeaturesToTrack_0(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, useHarrisDetector, k); return; } /** *

Determines strong corners on an image.

* *

The function finds the most prominent corners in the image or in the * specified image region, as described in [Shi94]:

*
    *
  • Function calculates the corner quality measure at every source image * pixel using the "cornerMinEigenVal" or "cornerHarris". *
  • Function performs a non-maximum suppression (the local maximums in *3 * x 3* neighborhood are retained). *
  • The corners with the minimal eigenvalue less than qualityLevel * * max_(x,y) qualityMeasureMap(x,y) are rejected. *
  • The remaining corners are sorted by the quality measure in the * descending order. *
  • Function throws away each corner for which there is a stronger corner * at a distance less than maxDistance. *
* *

The function can be used to initialize a point-based tracker of an object.

* *

Note: If the function is called with different values A and * B of the parameter qualityLevel, and A * > {B}, the vector of returned corners with qualityLevel=A will * be the prefix of the output vector with qualityLevel=B.

* * @param image Input 8-bit or floating-point 32-bit, single-channel image. * @param corners Output vector of detected corners. * @param maxCorners Maximum number of corners to return. If there are more * corners than are found, the strongest of them is returned. * @param qualityLevel Parameter characterizing the minimal accepted quality of * image corners. The parameter value is multiplied by the best corner quality * measure, which is the minimal eigenvalue (see "cornerMinEigenVal") or the * Harris function response (see "cornerHarris"). The corners with the quality * measure less than the product are rejected. For example, if the best corner * has the quality measure = 1500, and the qualityLevel=0.01, then * all the corners with the quality measure less than 15 are rejected. * @param minDistance Minimum possible Euclidean distance between the returned * corners. * * @see org.opencv.imgproc.Imgproc.goodFeaturesToTrack * @see org.opencv.imgproc.Imgproc#cornerHarris * @see org.opencv.video.Video#estimateRigidTransform * @see org.opencv.imgproc.Imgproc#cornerMinEigenVal * @see org.opencv.video.Video#calcOpticalFlowPyrLK */ public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance) { Mat corners_mat = corners; goodFeaturesToTrack_1(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance); return; } // // C++: void grabCut(Mat img, Mat& mask, Rect rect, Mat& bgdModel, Mat& fgdModel, int iterCount, int mode = GC_EVAL) // /** *

Runs the GrabCut algorithm.

* *

The function implements the GrabCut image segmentation algorithm * (http://en.wikipedia.org/wiki/GrabCut). * See the sample grabcut.cpp to learn how to use the function.

* *

Note:

*
    *
  • An example using the GrabCut algorithm can be found at * opencv_source_code/samples/cpp/grabcut.cpp *
  • (Python) An example using the GrabCut algorithm can be found at * opencv_source_code/samples/python2/grabcut.py *
* * @param img Input 8-bit 3-channel image. * @param mask Input/output 8-bit single-channel mask. The mask is initialized * by the function when mode is set to GC_INIT_WITH_RECT. * Its elements may have one of following values: *
    *
  • GC_BGD defines an obvious background pixels. *
  • GC_FGD defines an obvious foreground (object) pixel. *
  • GC_PR_BGD defines a possible background pixel. *
  • GC_PR_FGD defines a possible foreground pixel. *
* @param rect ROI containing a segmented object. The pixels outside of the ROI * are marked as "obvious background". The parameter is only used when * mode==GC_INIT_WITH_RECT. * @param bgdModel Temporary array for the background model. Do not modify it * while you are processing the same image. * @param fgdModel Temporary arrays for the foreground model. Do not modify it * while you are processing the same image. * @param iterCount Number of iterations the algorithm should make before * returning the result. Note that the result can be refined with further calls * with mode==GC_INIT_WITH_MASK or mode==GC_EVAL. * @param mode Operation mode that could be one of the following: *
    *
  • GC_INIT_WITH_RECT The function initializes the state and the mask * using the provided rectangle. After that it runs iterCount * iterations of the algorithm. *
  • GC_INIT_WITH_MASK The function initializes the state using the * provided mask. Note that GC_INIT_WITH_RECT and GC_INIT_WITH_MASK * can be combined. Then, all the pixels outside of the ROI are automatically * initialized with GC_BGD. *
  • GC_EVAL The value means that the algorithm should just resume. *
* * @see org.opencv.imgproc.Imgproc.grabCut */ public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount, int mode) { grabCut_0(img.nativeObj, mask.nativeObj, rect.x, rect.y, rect.width, rect.height, bgdModel.nativeObj, fgdModel.nativeObj, iterCount, mode); return; } /** *

Runs the GrabCut algorithm.

* *

The function implements the GrabCut image segmentation algorithm * (http://en.wikipedia.org/wiki/GrabCut). * See the sample grabcut.cpp to learn how to use the function.

* *

Note:

*
    *
  • An example using the GrabCut algorithm can be found at * opencv_source_code/samples/cpp/grabcut.cpp *
  • (Python) An example using the GrabCut algorithm can be found at * opencv_source_code/samples/python2/grabcut.py *
* * @param img Input 8-bit 3-channel image. * @param mask Input/output 8-bit single-channel mask. The mask is initialized * by the function when mode is set to GC_INIT_WITH_RECT. * Its elements may have one of following values: *
    *
  • GC_BGD defines an obvious background pixels. *
  • GC_FGD defines an obvious foreground (object) pixel. *
  • GC_PR_BGD defines a possible background pixel. *
  • GC_PR_FGD defines a possible foreground pixel. *
* @param rect ROI containing a segmented object. The pixels outside of the ROI * are marked as "obvious background". The parameter is only used when * mode==GC_INIT_WITH_RECT. * @param bgdModel Temporary array for the background model. Do not modify it * while you are processing the same image. * @param fgdModel Temporary arrays for the foreground model. Do not modify it * while you are processing the same image. * @param iterCount Number of iterations the algorithm should make before * returning the result. Note that the result can be refined with further calls * with mode==GC_INIT_WITH_MASK or mode==GC_EVAL. * * @see org.opencv.imgproc.Imgproc.grabCut */ public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount) { grabCut_1(img.nativeObj, mask.nativeObj, rect.x, rect.y, rect.width, rect.height, bgdModel.nativeObj, fgdModel.nativeObj, iterCount); return; } // // C++: void initUndistortRectifyMap(Mat cameraMatrix, Mat distCoeffs, Mat R, Mat newCameraMatrix, Size size, int m1type, Mat& map1, Mat& map2) // /** *

Computes the undistortion and rectification transformation map.

* *

The function computes the joint undistortion and rectification transformation * and represents the result in the form of maps for "remap". The undistorted * image looks like original, as if it is captured with a camera using the * camera matrix =newCameraMatrix and zero distortion. In case of a * monocular camera, newCameraMatrix is usually equal to * cameraMatrix, or it can be computed by "getOptimalNewCameraMatrix" * for a better control over scaling. In case of a stereo camera, * newCameraMatrix is normally set to P1 or * P2 computed by "stereoRectify".

* *

Also, this new camera is oriented differently in the coordinate space, * according to R. That, for example, helps to align two heads of a * stereo camera so that the epipolar lines on both images become horizontal and * have the same y- coordinate (in case of a horizontally aligned stereo * camera).

* *

The function actually builds the maps for the inverse mapping algorithm that * is used by "remap". That is, for each pixel (u, v) in the * destination (corrected and rectified) image, the function computes the * corresponding coordinates in the source image (that is, in the original image * from camera). The following process is applied:

* *

x <- (u - (c')_x)/(f')_x * y <- (v - (c')_y)/(f')_y * ([X Y W]) ^T <- R^(-1)*[x y 1]^T * x' <- X/W * y' <- Y/W * x" <- x' (1 + k_1 r^2 + k_2 r^4 + k_3 r^6) + 2p_1 x' y' + p_2(r^2 + 2 x'^2) * y" <- y' (1 + k_1 r^2 + k_2 r^4 + k_3 r^6) + p_1(r^2 + 2 y'^2) + 2 p_2 x' y' * map_x(u,v) <- x" f_x + c_x * map_y(u,v) <- y" f_y + c_y

* *

where (k_1, k_2, p_1, p_2[, k_3]) are the distortion coefficients.

* *

In case of a stereo camera, this function is called twice: once for each * camera head, after "stereoRectify", which in its turn is called after * "stereoCalibrate". But if the stereo camera was not calibrated, it is still * possible to compute the rectification transformations directly from the * fundamental matrix using "stereoRectifyUncalibrated". For each camera, the * function computes homography H as the rectification * transformation in a pixel domain, not a rotation matrix R in 3D * space. R can be computed from H as

* *

R = cameraMatrix ^(-1) * H * cameraMatrix

* *

where cameraMatrix can be chosen arbitrarily.

* * @param cameraMatrix Input camera matrix A= *

|f_x 0 c_x| * |0 f_y c_y| * |0 0 1| * .

* @param distCoeffs Input vector of distortion coefficients (k_1, k_2, p_1, * p_2[, k_3[, k_4, k_5, k_6]]) of 4, 5, or 8 elements. If the vector is * NULL/empty, the zero distortion coefficients are assumed. * @param R Optional rectification transformation in the object space (3x3 * matrix). R1 or R2, computed by "stereoRectify" can * be passed here. If the matrix is empty, the identity transformation is * assumed. In cvInitUndistortMap R assumed to be an identity * matrix. * @param newCameraMatrix New camera matrix A'= *

|f_x' 0 c_x'| * |0 f_y' c_y'| * |0 0 1| * .

* @param size Undistorted image size. * @param m1type Type of the first output map that can be CV_32FC1 * or CV_16SC2. See "convertMaps" for details. * @param map1 The first output map. * @param map2 The second output map. * * @see org.opencv.imgproc.Imgproc.initUndistortRectifyMap */ public static void initUndistortRectifyMap(Mat cameraMatrix, Mat distCoeffs, Mat R, Mat newCameraMatrix, Size size, int m1type, Mat map1, Mat map2) { initUndistortRectifyMap_0(cameraMatrix.nativeObj, distCoeffs.nativeObj, R.nativeObj, newCameraMatrix.nativeObj, size.width, size.height, m1type, map1.nativeObj, map2.nativeObj); return; } // // C++: float initWideAngleProjMap(Mat cameraMatrix, Mat distCoeffs, Size imageSize, int destImageWidth, int m1type, Mat& map1, Mat& map2, int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0) // public static float initWideAngleProjMap(Mat cameraMatrix, Mat distCoeffs, Size imageSize, int destImageWidth, int m1type, Mat map1, Mat map2, int projType, double alpha) { float retVal = initWideAngleProjMap_0(cameraMatrix.nativeObj, distCoeffs.nativeObj, imageSize.width, imageSize.height, destImageWidth, m1type, map1.nativeObj, map2.nativeObj, projType, alpha); return retVal; } public static float initWideAngleProjMap(Mat cameraMatrix, Mat distCoeffs, Size imageSize, int destImageWidth, int m1type, Mat map1, Mat map2) { float retVal = initWideAngleProjMap_1(cameraMatrix.nativeObj, distCoeffs.nativeObj, imageSize.width, imageSize.height, destImageWidth, m1type, map1.nativeObj, map2.nativeObj); return retVal; } // // C++: void integral(Mat src, Mat& sum, int sdepth = -1) // /** *

Calculates the integral of an image.

* *

The functions calculate one or more integral images for the source image as * follows:

* *

sum(X,Y) = sum(by: x<X,y<Y) image(x,y)

* * * *

sqsum(X,Y) = sum(by: x<X,y<Y) image(x,y)^2

* * * *

tilted(X,Y) = sum(by: y<Y,abs(x-X+1) <= Y-y-1) image(x,y)

* *

Using these integral images, you can calculate sum, mean, and standard * deviation over a specific up-right or rotated rectangular region of the image * in a constant time, for example:

* *

sum(by: x_1 <= x < x_2, y_1 <= y < y_2) image(x,y) = sum(x_2,y_2)- * sum(x_1,y_2)- sum(x_2,y_1)+ sum(x_1,y_1)

* *

It makes possible to do a fast blurring or fast block correlation with a * variable window size, for example. In case of multi-channel images, sums for * each channel are accumulated independently.

* *

As a practical example, the next figure shows the calculation of the integral * of a straight rectangle Rect(3,3,3,2) and of a tilted rectangle * Rect(5,1,2,3). The selected pixels in the original * image are shown, as well as the relative pixels in the integral * images sum and tilted.

* * @param src a src * @param sum integral image as (W+1)x(H+1), 32-bit integer or * floating-point (32f or 64f). * @param sdepth desired depth of the integral and the tilted integral images, * CV_32S, CV_32F, or CV_64F. * * @see org.opencv.imgproc.Imgproc.integral */ public static void integral(Mat src, Mat sum, int sdepth) { integral_0(src.nativeObj, sum.nativeObj, sdepth); return; } /** *

Calculates the integral of an image.

* *

The functions calculate one or more integral images for the source image as * follows:

* *

sum(X,Y) = sum(by: x<X,y<Y) image(x,y)

* * * *

sqsum(X,Y) = sum(by: x<X,y<Y) image(x,y)^2

* * * *

tilted(X,Y) = sum(by: y<Y,abs(x-X+1) <= Y-y-1) image(x,y)

* *

Using these integral images, you can calculate sum, mean, and standard * deviation over a specific up-right or rotated rectangular region of the image * in a constant time, for example:

* *

sum(by: x_1 <= x < x_2, y_1 <= y < y_2) image(x,y) = sum(x_2,y_2)- * sum(x_1,y_2)- sum(x_2,y_1)+ sum(x_1,y_1)

* *

It makes possible to do a fast blurring or fast block correlation with a * variable window size, for example. In case of multi-channel images, sums for * each channel are accumulated independently.

* *

As a practical example, the next figure shows the calculation of the integral * of a straight rectangle Rect(3,3,3,2) and of a tilted rectangle * Rect(5,1,2,3). The selected pixels in the original * image are shown, as well as the relative pixels in the integral * images sum and tilted.

* * @param src a src * @param sum integral image as (W+1)x(H+1), 32-bit integer or * floating-point (32f or 64f). * * @see org.opencv.imgproc.Imgproc.integral */ public static void integral(Mat src, Mat sum) { integral_1(src.nativeObj, sum.nativeObj); return; } // // C++: void integral(Mat src, Mat& sum, Mat& sqsum, int sdepth = -1) // /** *

Calculates the integral of an image.

* *

The functions calculate one or more integral images for the source image as * follows:

* *

sum(X,Y) = sum(by: x<X,y<Y) image(x,y)

* * * *

sqsum(X,Y) = sum(by: x<X,y<Y) image(x,y)^2

* * * *

tilted(X,Y) = sum(by: y<Y,abs(x-X+1) <= Y-y-1) image(x,y)

* *

Using these integral images, you can calculate sum, mean, and standard * deviation over a specific up-right or rotated rectangular region of the image * in a constant time, for example:

* *

sum(by: x_1 <= x < x_2, y_1 <= y < y_2) image(x,y) = sum(x_2,y_2)- * sum(x_1,y_2)- sum(x_2,y_1)+ sum(x_1,y_1)

* *

It makes possible to do a fast blurring or fast block correlation with a * variable window size, for example. In case of multi-channel images, sums for * each channel are accumulated independently.

* *

As a practical example, the next figure shows the calculation of the integral * of a straight rectangle Rect(3,3,3,2) and of a tilted rectangle * Rect(5,1,2,3). The selected pixels in the original * image are shown, as well as the relative pixels in the integral * images sum and tilted.

* * @param src a src * @param sum integral image as (W+1)x(H+1), 32-bit integer or * floating-point (32f or 64f). * @param sqsum integral image for squared pixel values; it is (W+1)x(H+1), * double-precision floating-point (64f) array. * @param sdepth desired depth of the integral and the tilted integral images, * CV_32S, CV_32F, or CV_64F. * * @see org.opencv.imgproc.Imgproc.integral */ public static void integral2(Mat src, Mat sum, Mat sqsum, int sdepth) { integral2_0(src.nativeObj, sum.nativeObj, sqsum.nativeObj, sdepth); return; } /** *

Calculates the integral of an image.

* *

The functions calculate one or more integral images for the source image as * follows:

* *

sum(X,Y) = sum(by: x<X,y<Y) image(x,y)

* * * *

sqsum(X,Y) = sum(by: x<X,y<Y) image(x,y)^2

* * * *

tilted(X,Y) = sum(by: y<Y,abs(x-X+1) <= Y-y-1) image(x,y)

* *

Using these integral images, you can calculate sum, mean, and standard * deviation over a specific up-right or rotated rectangular region of the image * in a constant time, for example:

* *

sum(by: x_1 <= x < x_2, y_1 <= y < y_2) image(x,y) = sum(x_2,y_2)- * sum(x_1,y_2)- sum(x_2,y_1)+ sum(x_1,y_1)

* *

It makes possible to do a fast blurring or fast block correlation with a * variable window size, for example. In case of multi-channel images, sums for * each channel are accumulated independently.

* *

As a practical example, the next figure shows the calculation of the integral * of a straight rectangle Rect(3,3,3,2) and of a tilted rectangle * Rect(5,1,2,3). The selected pixels in the original * image are shown, as well as the relative pixels in the integral * images sum and tilted.

* * @param src a src * @param sum integral image as (W+1)x(H+1), 32-bit integer or * floating-point (32f or 64f). * @param sqsum integral image for squared pixel values; it is (W+1)x(H+1), * double-precision floating-point (64f) array. * * @see org.opencv.imgproc.Imgproc.integral */ public static void integral2(Mat src, Mat sum, Mat sqsum) { integral2_1(src.nativeObj, sum.nativeObj, sqsum.nativeObj); return; } // // C++: void integral(Mat src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth = -1) // /** *

Calculates the integral of an image.

* *

The functions calculate one or more integral images for the source image as * follows:

* *

sum(X,Y) = sum(by: x<X,y<Y) image(x,y)

* * * *

sqsum(X,Y) = sum(by: x<X,y<Y) image(x,y)^2

* * * *

tilted(X,Y) = sum(by: y<Y,abs(x-X+1) <= Y-y-1) image(x,y)

* *

Using these integral images, you can calculate sum, mean, and standard * deviation over a specific up-right or rotated rectangular region of the image * in a constant time, for example:

* *

sum(by: x_1 <= x < x_2, y_1 <= y < y_2) image(x,y) = sum(x_2,y_2)- * sum(x_1,y_2)- sum(x_2,y_1)+ sum(x_1,y_1)

* *

It makes possible to do a fast blurring or fast block correlation with a * variable window size, for example. In case of multi-channel images, sums for * each channel are accumulated independently.

* *

As a practical example, the next figure shows the calculation of the integral * of a straight rectangle Rect(3,3,3,2) and of a tilted rectangle * Rect(5,1,2,3). The selected pixels in the original * image are shown, as well as the relative pixels in the integral * images sum and tilted.

* * @param src a src * @param sum integral image as (W+1)x(H+1), 32-bit integer or * floating-point (32f or 64f). * @param sqsum integral image for squared pixel values; it is (W+1)x(H+1), * double-precision floating-point (64f) array. * @param tilted integral for the image rotated by 45 degrees; it is * (W+1)x(H+1) array with the same data type as sum. * @param sdepth desired depth of the integral and the tilted integral images, * CV_32S, CV_32F, or CV_64F. * * @see org.opencv.imgproc.Imgproc.integral */ public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted, int sdepth) { integral3_0(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj, sdepth); return; } /** *

Calculates the integral of an image.

* *

The functions calculate one or more integral images for the source image as * follows:

* *

sum(X,Y) = sum(by: x<X,y<Y) image(x,y)

* * * *

sqsum(X,Y) = sum(by: x<X,y<Y) image(x,y)^2

* * * *

tilted(X,Y) = sum(by: y<Y,abs(x-X+1) <= Y-y-1) image(x,y)

* *

Using these integral images, you can calculate sum, mean, and standard * deviation over a specific up-right or rotated rectangular region of the image * in a constant time, for example:

* *

sum(by: x_1 <= x < x_2, y_1 <= y < y_2) image(x,y) = sum(x_2,y_2)- * sum(x_1,y_2)- sum(x_2,y_1)+ sum(x_1,y_1)

* *

It makes possible to do a fast blurring or fast block correlation with a * variable window size, for example. In case of multi-channel images, sums for * each channel are accumulated independently.

* *

As a practical example, the next figure shows the calculation of the integral * of a straight rectangle Rect(3,3,3,2) and of a tilted rectangle * Rect(5,1,2,3). The selected pixels in the original * image are shown, as well as the relative pixels in the integral * images sum and tilted.

* * @param src a src * @param sum integral image as (W+1)x(H+1), 32-bit integer or * floating-point (32f or 64f). * @param sqsum integral image for squared pixel values; it is (W+1)x(H+1), * double-precision floating-point (64f) array. * @param tilted integral for the image rotated by 45 degrees; it is * (W+1)x(H+1) array with the same data type as sum. * * @see org.opencv.imgproc.Imgproc.integral */ public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted) { integral3_1(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj); return; } // // C++: float intersectConvexConvex(Mat _p1, Mat _p2, Mat& _p12, bool handleNested = true) // public static float intersectConvexConvex(Mat _p1, Mat _p2, Mat _p12, boolean handleNested) { float retVal = intersectConvexConvex_0(_p1.nativeObj, _p2.nativeObj, _p12.nativeObj, handleNested); return retVal; } public static float intersectConvexConvex(Mat _p1, Mat _p2, Mat _p12) { float retVal = intersectConvexConvex_1(_p1.nativeObj, _p2.nativeObj, _p12.nativeObj); return retVal; } // // C++: void invertAffineTransform(Mat M, Mat& iM) // /** *

Inverts an affine transformation.

* *

The function computes an inverse affine transformation represented by 2 x * 3 matrix M :

* *

a_11 a_12 b_1 * a_21 a_22 b_2

* *

The result is also a 2 x 3 matrix of the same type as * M.

* * @param M Original affine transformation. * @param iM Output reverse affine transformation. * * @see org.opencv.imgproc.Imgproc.invertAffineTransform */ public static void invertAffineTransform(Mat M, Mat iM) { invertAffineTransform_0(M.nativeObj, iM.nativeObj); return; } // // C++: bool isContourConvex(vector_Point contour) // /** *

Tests a contour convexity.

* *

The function tests whether the input contour is convex or not. The contour * must be simple, that is, without self-intersections. Otherwise, the function * output is undefined.

* * @param contour Input vector of 2D points, stored in: *
    *
  • std.vector<> or Mat (C++ interface) *
  • CvSeq* or CvMat* (C interface) *
  • Nx2 numpy array (Python interface) *
* * @see org.opencv.imgproc.Imgproc.isContourConvex */ public static boolean isContourConvex(MatOfPoint contour) { Mat contour_mat = contour; boolean retVal = isContourConvex_0(contour_mat.nativeObj); return retVal; } // // C++: double matchShapes(Mat contour1, Mat contour2, int method, double parameter) // /** *

Compares two shapes.

* *

The function compares two shapes. All three implemented methods use the Hu * invariants (see "HuMoments") as follows (A denotes object1,B * denotes object2):

*
    *
  • method=CV_CONTOURS_MATCH_I1 *
* *

I_1(A,B) = sum(by: i=1...7) <= ft|1/(m^A_i) - 1/(m^B_i) right|

* *
    *
  • method=CV_CONTOURS_MATCH_I2 *
* *

I_2(A,B) = sum(by: i=1...7) <= ft|m^A_i - m^B_i right|

* *
    *
  • method=CV_CONTOURS_MATCH_I3 *
* *

I_3(A,B) = max _(i=1...7)(<= ft| m^A_i - m^B_i right|)/(<= ft| m^A_i * right|)

* *

where

* *

m^A_i = sign(h^A_i) * log(h^A_i) * m^B_i = sign(h^B_i) * log(h^B_i)

* *

and h^A_i, h^B_i are the Hu moments of A and B, * respectively.

* * @param contour1 a contour1 * @param contour2 a contour2 * @param method Comparison method: CV_CONTOURS_MATCH_I1, * CV_CONTOURS_MATCH_I2 \ *

or CV_CONTOURS_MATCH_I3 (see the details below).

* @param parameter Method-specific parameter (not supported now). * * @see org.opencv.imgproc.Imgproc.matchShapes */ public static double matchShapes(Mat contour1, Mat contour2, int method, double parameter) { double retVal = matchShapes_0(contour1.nativeObj, contour2.nativeObj, method, parameter); return retVal; } // // C++: void matchTemplate(Mat image, Mat templ, Mat& result, int method) // /** *

Compares a template against overlapped image regions.

* *

The function slides through image, compares the overlapped * patches of size w x h against templ using the specified * method and stores the comparison results in result. Here are the * formulae for the available comparison methods (I denotes * image, T template, R * result). The summation is done over template and/or the image * patch: x' = 0...w-1, y' = 0...h-1

*
    *
  • method=CV_TM_SQDIFF *
* *

R(x,y)= sum(by: x',y')(T(x',y')-I(x+x',y+y'))^2

* *
    *
  • method=CV_TM_SQDIFF_NORMED *
* *

R(x,y)= (sum_(x',y')(T(x',y')-I(x+x',y+y'))^2)/(sqrt(sum_(x',y')T(x',y')^2 * * sum_(x',y') I(x+x',y+y')^2))

* *
    *
  • method=CV_TM_CCORR *
* *

R(x,y)= sum(by: x',y')(T(x',y') * I(x+x',y+y'))

* *
    *
  • method=CV_TM_CCORR_NORMED *
* *

R(x,y)= (sum_(x',y')(T(x',y') * I(x+x',y+y')))/(sqrt(sum_(x',y')T(x',y')^2 * * sum_(x',y') I(x+x',y+y')^2))

* *
    *
  • method=CV_TM_CCOEFF *
* *

R(x,y)= sum(by: x',y')(T'(x',y') * I'(x+x',y+y'))

* *

where

* *

T'(x',y')=T(x',y') - 1/(w * h) * sum(by: x'',y'') T(x'',y'') * I'(x+x',y+y')=I(x+x',y+y') - 1/(w * h) * sum(by: x'',y'') I(x+x'',y+y'') *

* *
    *
  • method=CV_TM_CCOEFF_NORMED *
* *

R(x,y)= (sum_(x',y')(T'(x',y') * I'(x+x',y+y')))/(sqrt(sum_(x',y')T'(x',y')^2 * * sum_(x',y') I'(x+x',y+y')^2))

* *

After the function finishes the comparison, the best matches can be found as * global minimums (when CV_TM_SQDIFF was used) or maximums (when * CV_TM_CCORR or CV_TM_CCOEFF was used) using the * "minMaxLoc" function. In case of a color image, template summation in the * numerator and each sum in the denominator is done over all of the channels * and separate mean values are used for each channel. That is, the function can * take a color template and a color image. The result will still be a * single-channel image, which is easier to analyze.

* *

Note:

*
    *
  • (Python) An example on how to match mouse selected regions in an image * can be found at opencv_source_code/samples/python2/mouse_and_match.py *
* * @param image Image where the search is running. It must be 8-bit or 32-bit * floating-point. * @param templ Searched template. It must be not greater than the source image * and have the same data type. * @param result Map of comparison results. It must be single-channel 32-bit * floating-point. If image is W x H and templ * is w x h, then result is (W-w+1) x(H-h+1). * @param method Parameter specifying the comparison method (see below). * * @see org.opencv.imgproc.Imgproc.matchTemplate */ public static void matchTemplate(Mat image, Mat templ, Mat result, int method) { matchTemplate_0(image.nativeObj, templ.nativeObj, result.nativeObj, method); return; } // // C++: void medianBlur(Mat src, Mat& dst, int ksize) // /** *

Blurs an image using the median filter.

* *

The function smoothes an image using the median filter with the ksize x * ksize aperture. Each channel of a multi-channel image is processed * independently. In-place operation is supported.

* * @param src input 1-, 3-, or 4-channel image; when ksize is 3 or * 5, the image depth should be CV_8U, CV_16U, or * CV_32F, for larger aperture sizes, it can only be * CV_8U. * @param dst destination array of the same size and type as src. * @param ksize aperture linear size; it must be odd and greater than 1, for * example: 3, 5, 7... * * @see org.opencv.imgproc.Imgproc.medianBlur * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#bilateralFilter * @see org.opencv.imgproc.Imgproc#blur */ public static void medianBlur(Mat src, Mat dst, int ksize) { medianBlur_0(src.nativeObj, dst.nativeObj, ksize); return; } // // C++: RotatedRect minAreaRect(vector_Point2f points) // /** *

Finds a rotated rectangle of the minimum area enclosing the input 2D point * set.

* *

The function calculates and returns the minimum-area bounding rectangle * (possibly rotated) for a specified point set. See the OpenCV sample * minarea.cpp. * Developer should keep in mind that the returned rotatedRect can contain * negative indices when data is close the the containing Mat element boundary.

* * @param points Input vector of 2D points, stored in: *
    *
  • std.vector<> or Mat (C++ interface) *
  • CvSeq* or CvMat* (C interface) *
  • Nx2 numpy array (Python interface) *
* * @see org.opencv.imgproc.Imgproc.minAreaRect */ public static RotatedRect minAreaRect(MatOfPoint2f points) { Mat points_mat = points; RotatedRect retVal = new RotatedRect(minAreaRect_0(points_mat.nativeObj)); return retVal; } // // C++: void minEnclosingCircle(vector_Point2f points, Point2f& center, float& radius) // /** *

Finds a circle of the minimum area enclosing a 2D point set.

* *

The function finds the minimal enclosing circle of a 2D point set using an * iterative algorithm. See the OpenCV sample minarea.cpp.

* * @param points Input vector of 2D points, stored in: *
    *
  • std.vector<> or Mat (C++ interface) *
  • CvSeq* or CvMat* (C interface) *
  • Nx2 numpy array (Python interface) *
* @param center Output center of the circle. * @param radius Output radius of the circle. * * @see org.opencv.imgproc.Imgproc.minEnclosingCircle */ public static void minEnclosingCircle(MatOfPoint2f points, Point center, float[] radius) { Mat points_mat = points; double[] center_out = new double[2]; double[] radius_out = new double[1]; minEnclosingCircle_0(points_mat.nativeObj, center_out, radius_out); if(center!=null){ center.x = center_out[0]; center.y = center_out[1]; } if(radius!=null) radius[0] = (float)radius_out[0]; return; } // // C++: Moments moments(Mat array, bool binaryImage = false) // /** *

Calculates all of the moments up to the third order of a polygon or * rasterized shape.

* *

The function computes moments, up to the 3rd order, of a vector shape or a * rasterized shape. The results are returned in the structure Moments * defined as:

* *

// C++ code:

* *

class Moments

* * *

public:

* *

Moments();

* *

Moments(double m00, double m10, double m01, double m20, double m11,

* *

double m02, double m30, double m21, double m12, double m03);

* *

Moments(const CvMoments& moments);

* *

operator CvMoments() const;

* *

// spatial moments

* *

double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;

* *

// central moments

* *

double mu20, mu11, mu02, mu30, mu21, mu12, mu03;

* *

// central normalized moments

* *

double nu20, nu11, nu02, nu30, nu21, nu12, nu03;

* * *

In case of a raster image, the spatial moments Moments.m_(ji) are * computed as:

* *

m _(ji)= sum(by: x,y)(array(x,y) * x^j * y^i)

* *

The central moments Moments.mu_(ji) are computed as:

* *

mu _(ji)= sum(by: x,y)(array(x,y) * (x - x")^j * (y - y")^i)

* *

where (x", y") is the mass center:

* *

x" = (m_10)/(m_(00)), y" = (m_01)/(m_(00))

* *

The normalized central moments Moments.nu_(ij) are computed as:

* *

nu _(ji)= (mu_(ji))/(m_(00)^((i+j)/2+1)).

* *

Note:

* *

mu_00=m_00, nu_00=1 nu_10=mu_10=mu_01=mu_10=0, * hence the values are not stored.

* *

The moments of a contour are defined in the same way but computed using the * Green's formula (see http://en.wikipedia.org/wiki/Green_theorem). So, due to * a limited raster resolution, the moments computed for a contour are slightly * different from the moments computed for the same rasterized contour.

* *

Note:

* *

Since the contour moments are computed using Green formula, you may get * seemingly odd results for contours with self-intersections, e.g. a zero area * (m00) for butterfly-shaped contours.

* * @param array Raster image (single-channel, 8-bit or floating-point 2D array) * or an array (1 x N or N x 1) of 2D points (Point * or Point2f). * @param binaryImage If it is true, all non-zero image pixels are treated as * 1's. The parameter is used for images only. * * @see org.opencv.imgproc.Imgproc.moments * @see org.opencv.imgproc.Imgproc#contourArea * @see org.opencv.imgproc.Imgproc#arcLength */ public static Moments moments(Mat array, boolean binaryImage) { Moments retVal = new Moments(moments_0(array.nativeObj, binaryImage)); return retVal; } /** *

Calculates all of the moments up to the third order of a polygon or * rasterized shape.

* *

The function computes moments, up to the 3rd order, of a vector shape or a * rasterized shape. The results are returned in the structure Moments * defined as:

* *

// C++ code:

* *

class Moments

* * *

public:

* *

Moments();

* *

Moments(double m00, double m10, double m01, double m20, double m11,

* *

double m02, double m30, double m21, double m12, double m03);

* *

Moments(const CvMoments& moments);

* *

operator CvMoments() const;

* *

// spatial moments

* *

double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;

* *

// central moments

* *

double mu20, mu11, mu02, mu30, mu21, mu12, mu03;

* *

// central normalized moments

* *

double nu20, nu11, nu02, nu30, nu21, nu12, nu03;

* * *

In case of a raster image, the spatial moments Moments.m_(ji) are * computed as:

* *

m _(ji)= sum(by: x,y)(array(x,y) * x^j * y^i)

* *

The central moments Moments.mu_(ji) are computed as:

* *

mu _(ji)= sum(by: x,y)(array(x,y) * (x - x")^j * (y - y")^i)

* *

where (x", y") is the mass center:

* *

x" = (m_10)/(m_(00)), y" = (m_01)/(m_(00))

* *

The normalized central moments Moments.nu_(ij) are computed as:

* *

nu _(ji)= (mu_(ji))/(m_(00)^((i+j)/2+1)).

* *

Note:

* *

mu_00=m_00, nu_00=1 nu_10=mu_10=mu_01=mu_10=0, * hence the values are not stored.

* *

The moments of a contour are defined in the same way but computed using the * Green's formula (see http://en.wikipedia.org/wiki/Green_theorem). So, due to * a limited raster resolution, the moments computed for a contour are slightly * different from the moments computed for the same rasterized contour.

* *

Note:

* *

Since the contour moments are computed using Green formula, you may get * seemingly odd results for contours with self-intersections, e.g. a zero area * (m00) for butterfly-shaped contours.

* * @param array Raster image (single-channel, 8-bit or floating-point 2D array) * or an array (1 x N or N x 1) of 2D points (Point * or Point2f). * * @see org.opencv.imgproc.Imgproc.moments * @see org.opencv.imgproc.Imgproc#contourArea * @see org.opencv.imgproc.Imgproc#arcLength */ public static Moments moments(Mat array) { Moments retVal = new Moments(moments_1(array.nativeObj)); return retVal; } // // C++: void morphologyEx(Mat src, Mat& dst, int op, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) // /** *

Performs advanced morphological transformations.

* *

The function can perform advanced morphological transformations using an * erosion and dilation as basic operations.

* *

Opening operation:

* *

dst = open(src, element)= dilate(erode(src, element))

* *

Closing operation:

* *

dst = close(src, element)= erode(dilate(src, element))

* *

Morphological gradient:

* *

dst = morph_grad(src, element)= dilate(src, element)- erode(src, * element)

* *

"Top hat":

* *

dst = tophat(src, element)= src - open(src, element)

* *

"Black hat":

* *

dst = blackhat(src, element)= close(src, element)- src

* *

Any of the operations can be done in-place. In case of multi-channel images, * each channel is processed independently.

* *

Note:

*
    *
  • An example using the morphologyEx function for the morphological * opening and closing operations can be found at opencv_source_code/samples/cpp/morphology2.cpp *
* * @param src Source image. The number of channels can be arbitrary. The depth * should be one of CV_8U, CV_16U, CV_16S, * CV_32F or CV_64F. * @param dst Destination image of the same size and type as src. * @param op Type of a morphological operation that can be one of the following: *
    *
  • MORPH_OPEN - an opening operation *
  • MORPH_CLOSE - a closing operation *
  • MORPH_GRADIENT - a morphological gradient *
  • MORPH_TOPHAT - "top hat" *
  • MORPH_BLACKHAT - "black hat" *
* @param kernel a kernel * @param anchor a anchor * @param iterations Number of times erosion and dilation are applied. * @param borderType Pixel extrapolation method. See "borderInterpolate" for * details. * @param borderValue Border value in case of a constant border. The default * value has a special meaning. See "createMorphologyFilter" for details. * * @see org.opencv.imgproc.Imgproc.morphologyEx * @see org.opencv.imgproc.Imgproc#erode * @see org.opencv.imgproc.Imgproc#dilate */ public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) { morphologyEx_0(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); return; } /** *

Performs advanced morphological transformations.

* *

The function can perform advanced morphological transformations using an * erosion and dilation as basic operations.

* *

Opening operation:

* *

dst = open(src, element)= dilate(erode(src, element))

* *

Closing operation:

* *

dst = close(src, element)= erode(dilate(src, element))

* *

Morphological gradient:

* *

dst = morph_grad(src, element)= dilate(src, element)- erode(src, * element)

* *

"Top hat":

* *

dst = tophat(src, element)= src - open(src, element)

* *

"Black hat":

* *

dst = blackhat(src, element)= close(src, element)- src

* *

Any of the operations can be done in-place. In case of multi-channel images, * each channel is processed independently.

* *

Note:

*
    *
  • An example using the morphologyEx function for the morphological * opening and closing operations can be found at opencv_source_code/samples/cpp/morphology2.cpp *
* * @param src Source image. The number of channels can be arbitrary. The depth * should be one of CV_8U, CV_16U, CV_16S, * CV_32F or CV_64F. * @param dst Destination image of the same size and type as src. * @param op Type of a morphological operation that can be one of the following: *
    *
  • MORPH_OPEN - an opening operation *
  • MORPH_CLOSE - a closing operation *
  • MORPH_GRADIENT - a morphological gradient *
  • MORPH_TOPHAT - "top hat" *
  • MORPH_BLACKHAT - "black hat" *
* @param kernel a kernel * @param anchor a anchor * @param iterations Number of times erosion and dilation are applied. * * @see org.opencv.imgproc.Imgproc.morphologyEx * @see org.opencv.imgproc.Imgproc#erode * @see org.opencv.imgproc.Imgproc#dilate */ public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations) { morphologyEx_1(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations); return; } /** *

Performs advanced morphological transformations.

* *

The function can perform advanced morphological transformations using an * erosion and dilation as basic operations.

* *

Opening operation:

* *

dst = open(src, element)= dilate(erode(src, element))

* *

Closing operation:

* *

dst = close(src, element)= erode(dilate(src, element))

* *

Morphological gradient:

* *

dst = morph_grad(src, element)= dilate(src, element)- erode(src, * element)

* *

"Top hat":

* *

dst = tophat(src, element)= src - open(src, element)

* *

"Black hat":

* *

dst = blackhat(src, element)= close(src, element)- src

* *

Any of the operations can be done in-place. In case of multi-channel images, * each channel is processed independently.

* *

Note:

*
    *
  • An example using the morphologyEx function for the morphological * opening and closing operations can be found at opencv_source_code/samples/cpp/morphology2.cpp *
* * @param src Source image. The number of channels can be arbitrary. The depth * should be one of CV_8U, CV_16U, CV_16S, * CV_32F or CV_64F. * @param dst Destination image of the same size and type as src. * @param op Type of a morphological operation that can be one of the following: *
    *
  • MORPH_OPEN - an opening operation *
  • MORPH_CLOSE - a closing operation *
  • MORPH_GRADIENT - a morphological gradient *
  • MORPH_TOPHAT - "top hat" *
  • MORPH_BLACKHAT - "black hat" *
* @param kernel a kernel * * @see org.opencv.imgproc.Imgproc.morphologyEx * @see org.opencv.imgproc.Imgproc#erode * @see org.opencv.imgproc.Imgproc#dilate */ public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel) { morphologyEx_2(src.nativeObj, dst.nativeObj, op, kernel.nativeObj); return; } // // C++: Point2d phaseCorrelate(Mat src1, Mat src2, Mat window = Mat()) // /** *

The function is used to detect translational shifts that occur between two * images. The operation takes advantage of the Fourier shift theorem for * detecting the translational shift in the frequency domain. It can be used for * fast image registration as well as motion estimation. For more information * please see http://en.wikipedia.org/wiki/Phase_correlation.

* *

Calculates the cross-power spectrum of two supplied source arrays. The arrays * are padded if needed with "getOptimalDFTSize".

* *

Return value: detected phase shift (sub-pixel) between the two arrays.

* *

The function performs the following equations

*
    *
  • First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann_function) * to each image to remove possible edge effects. This window is cached until * the array size changes to speed up processing time. *
  • Next it computes the forward DFTs of each source array: *
* *

mathbf(G)_a = mathcal(F)(src_1), mathbf(G)_b = mathcal(F)(src_2)

* *

where mathcal(F) is the forward DFT.

*
    *
  • It then computes the cross-power spectrum of each frequency domain * array: *
* *

R = (mathbf(G)_a mathbf(G)_b^*)/(|mathbf(G)_a mathbf(G)_b^*|)

* *
    *
  • Next the cross-correlation is converted back into the time domain via * the inverse DFT: *
* *

r = mathcal(F)^(-1)(R)

* *
    *
  • Finally, it computes the peak location and computes a 5x5 weighted * centroid around the peak to achieve sub-pixel accuracy. *
* *

(Delta x, Delta y) = weightedCentroid (arg max_((x, y))(r))

* *
    *
  • If non-zero, the response parameter is computed as the sum of the * elements of r within the 5x5 centroid around the peak location. It is * normalized to a maximum of 1 (meaning there is a single peak) and will be * smaller when there are multiple peaks. *
* * @param src1 Source floating point array (CV_32FC1 or CV_64FC1) * @param src2 Source floating point array (CV_32FC1 or CV_64FC1) * @param window Floating point array with windowing coefficients to reduce edge * effects (optional). * * @see org.opencv.imgproc.Imgproc.phaseCorrelate * @see org.opencv.imgproc.Imgproc#createHanningWindow * @see org.opencv.core.Core#dft * @see org.opencv.core.Core#mulSpectrums * @see org.opencv.core.Core#getOptimalDFTSize * @see org.opencv.core.Core#idft */ public static Point phaseCorrelate(Mat src1, Mat src2, Mat window) { Point retVal = new Point(phaseCorrelate_0(src1.nativeObj, src2.nativeObj, window.nativeObj)); return retVal; } /** *

The function is used to detect translational shifts that occur between two * images. The operation takes advantage of the Fourier shift theorem for * detecting the translational shift in the frequency domain. It can be used for * fast image registration as well as motion estimation. For more information * please see http://en.wikipedia.org/wiki/Phase_correlation.

* *

Calculates the cross-power spectrum of two supplied source arrays. The arrays * are padded if needed with "getOptimalDFTSize".

* *

Return value: detected phase shift (sub-pixel) between the two arrays.

* *

The function performs the following equations

*
    *
  • First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann_function) * to each image to remove possible edge effects. This window is cached until * the array size changes to speed up processing time. *
  • Next it computes the forward DFTs of each source array: *
* *

mathbf(G)_a = mathcal(F)(src_1), mathbf(G)_b = mathcal(F)(src_2)

* *

where mathcal(F) is the forward DFT.

*
    *
  • It then computes the cross-power spectrum of each frequency domain * array: *
* *

R = (mathbf(G)_a mathbf(G)_b^*)/(|mathbf(G)_a mathbf(G)_b^*|)

* *
    *
  • Next the cross-correlation is converted back into the time domain via * the inverse DFT: *
* *

r = mathcal(F)^(-1)(R)

* *
    *
  • Finally, it computes the peak location and computes a 5x5 weighted * centroid around the peak to achieve sub-pixel accuracy. *
* *

(Delta x, Delta y) = weightedCentroid (arg max_((x, y))(r))

* *
    *
  • If non-zero, the response parameter is computed as the sum of the * elements of r within the 5x5 centroid around the peak location. It is * normalized to a maximum of 1 (meaning there is a single peak) and will be * smaller when there are multiple peaks. *
* * @param src1 Source floating point array (CV_32FC1 or CV_64FC1) * @param src2 Source floating point array (CV_32FC1 or CV_64FC1) * * @see org.opencv.imgproc.Imgproc.phaseCorrelate * @see org.opencv.imgproc.Imgproc#createHanningWindow * @see org.opencv.core.Core#dft * @see org.opencv.core.Core#mulSpectrums * @see org.opencv.core.Core#getOptimalDFTSize * @see org.opencv.core.Core#idft */ public static Point phaseCorrelate(Mat src1, Mat src2) { Point retVal = new Point(phaseCorrelate_1(src1.nativeObj, src2.nativeObj)); return retVal; } // // C++: Point2d phaseCorrelateRes(Mat src1, Mat src2, Mat window, double* response = 0) // public static Point phaseCorrelateRes(Mat src1, Mat src2, Mat window, double[] response) { double[] response_out = new double[1]; Point retVal = new Point(phaseCorrelateRes_0(src1.nativeObj, src2.nativeObj, window.nativeObj, response_out)); if(response!=null) response[0] = (double)response_out[0]; return retVal; } public static Point phaseCorrelateRes(Mat src1, Mat src2, Mat window) { Point retVal = new Point(phaseCorrelateRes_1(src1.nativeObj, src2.nativeObj, window.nativeObj)); return retVal; } // // C++: double pointPolygonTest(vector_Point2f contour, Point2f pt, bool measureDist) // /** *

Performs a point-in-contour test.

* *

The function determines whether the point is inside a contour, outside, or * lies on an edge (or coincides with a vertex). It returns positive (inside), * negative (outside), or zero (on an edge) value, correspondingly. When * measureDist=false, the return value is +1, -1, and 0, * respectively. Otherwise, the return value is a signed distance between the * point and the nearest contour edge.

* *

See below a sample output of the function where each image pixel is tested * against the contour.

* * @param contour Input contour. * @param pt Point tested against the contour. * @param measureDist If true, the function estimates the signed distance from * the point to the nearest contour edge. Otherwise, the function only checks if * the point is inside a contour or not. * * @see org.opencv.imgproc.Imgproc.pointPolygonTest */ public static double pointPolygonTest(MatOfPoint2f contour, Point pt, boolean measureDist) { Mat contour_mat = contour; double retVal = pointPolygonTest_0(contour_mat.nativeObj, pt.x, pt.y, measureDist); return retVal; } // // C++: void preCornerDetect(Mat src, Mat& dst, int ksize, int borderType = BORDER_DEFAULT) // /** *

Calculates a feature map for corner detection.

* *

The function calculates the complex spatial derivative-based function of the * source image

* *

dst = (D_x src)^2 * D_(yy) src + (D_y src)^2 * D_(xx) src - 2 D_x src * * D_y src * D_(xy) src

* *

where D_x,D_y are the first image derivatives, * D_(xx),D_(yy) are the second image derivatives, and * D_(xy) is the mixed derivative. * The corners can be found as local maximums of the functions, as shown below: *

* *

// C++ code:

* *

Mat corners, dilated_corners;

* *

preCornerDetect(image, corners, 3);

* *

// dilation with 3x3 rectangular structuring element

* *

dilate(corners, dilated_corners, Mat(), 1);

* *

Mat corner_mask = corners == dilated_corners;

* *

* * @param src Source single-channel 8-bit of floating-point image. * @param dst Output image that has the type CV_32F and the same * size as src. * @param ksize Aperture size of the "Sobel". * @param borderType Pixel extrapolation method. See "borderInterpolate". * * @see org.opencv.imgproc.Imgproc.preCornerDetect */ public static void preCornerDetect(Mat src, Mat dst, int ksize, int borderType) { preCornerDetect_0(src.nativeObj, dst.nativeObj, ksize, borderType); return; } /** *

Calculates a feature map for corner detection.

* *

The function calculates the complex spatial derivative-based function of the * source image

* *

dst = (D_x src)^2 * D_(yy) src + (D_y src)^2 * D_(xx) src - 2 D_x src * * D_y src * D_(xy) src

* *

where D_x,D_y are the first image derivatives, * D_(xx),D_(yy) are the second image derivatives, and * D_(xy) is the mixed derivative. * The corners can be found as local maximums of the functions, as shown below: *

* *

// C++ code:

* *

Mat corners, dilated_corners;

* *

preCornerDetect(image, corners, 3);

* *

// dilation with 3x3 rectangular structuring element

* *

dilate(corners, dilated_corners, Mat(), 1);

* *

Mat corner_mask = corners == dilated_corners;

* *

* * @param src Source single-channel 8-bit of floating-point image. * @param dst Output image that has the type CV_32F and the same * size as src. * @param ksize Aperture size of the "Sobel". * * @see org.opencv.imgproc.Imgproc.preCornerDetect */ public static void preCornerDetect(Mat src, Mat dst, int ksize) { preCornerDetect_1(src.nativeObj, dst.nativeObj, ksize); return; } // // C++: void pyrDown(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) // /** *

Blurs an image and downsamples it.

* *

By default, size of the output image is computed as Size((src.cols+1)/2, * (src.rows+1)/2), but in any case, the following conditions should be * satisfied:

* *

ltBR gt| dstsize.width *2-src.cols| <= 2 * |dstsize.height *2-src.rows| <= 2

* *

The function performs the downsampling step of the Gaussian pyramid * construction. First, it convolves the source image with the kernel:

* *

1/256 1 4 6 4 1 * 4 16 24 16 4 * 6 24 36 24 6 * 4 16 24 16 4 * 1 4 6 4 1

* *

Then, it downsamples the image by rejecting even rows and columns.

* * @param src input image. * @param dst output image; it has the specified size and the same type as * src. * @param dstsize size of the output image. * @param borderType Pixel extrapolation method (BORDER_CONSTANT don't * supported). See "borderInterpolate" for details. * * @see org.opencv.imgproc.Imgproc.pyrDown */ public static void pyrDown(Mat src, Mat dst, Size dstsize, int borderType) { pyrDown_0(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height, borderType); return; } /** *

Blurs an image and downsamples it.

* *

By default, size of the output image is computed as Size((src.cols+1)/2, * (src.rows+1)/2), but in any case, the following conditions should be * satisfied:

* *

ltBR gt| dstsize.width *2-src.cols| <= 2 * |dstsize.height *2-src.rows| <= 2

* *

The function performs the downsampling step of the Gaussian pyramid * construction. First, it convolves the source image with the kernel:

* *

1/256 1 4 6 4 1 * 4 16 24 16 4 * 6 24 36 24 6 * 4 16 24 16 4 * 1 4 6 4 1

* *

Then, it downsamples the image by rejecting even rows and columns.

* * @param src input image. * @param dst output image; it has the specified size and the same type as * src. * @param dstsize size of the output image. * * @see org.opencv.imgproc.Imgproc.pyrDown */ public static void pyrDown(Mat src, Mat dst, Size dstsize) { pyrDown_1(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height); return; } /** *

Blurs an image and downsamples it.

* *

By default, size of the output image is computed as Size((src.cols+1)/2, * (src.rows+1)/2), but in any case, the following conditions should be * satisfied:

* *

ltBR gt| dstsize.width *2-src.cols| <= 2 * |dstsize.height *2-src.rows| <= 2

* *

The function performs the downsampling step of the Gaussian pyramid * construction. First, it convolves the source image with the kernel:

* *

1/256 1 4 6 4 1 * 4 16 24 16 4 * 6 24 36 24 6 * 4 16 24 16 4 * 1 4 6 4 1

* *

Then, it downsamples the image by rejecting even rows and columns.

* * @param src input image. * @param dst output image; it has the specified size and the same type as * src. * * @see org.opencv.imgproc.Imgproc.pyrDown */ public static void pyrDown(Mat src, Mat dst) { pyrDown_2(src.nativeObj, dst.nativeObj); return; } // // C++: void pyrMeanShiftFiltering(Mat src, Mat& dst, double sp, double sr, int maxLevel = 1, TermCriteria termcrit = TermCriteria( TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)) // /** *

Performs initial step of meanshift segmentation of an image.

* *

The function implements the filtering stage of meanshift segmentation, that * is, the output of the function is the filtered "posterized" image with color * gradients and fine-grain texture flattened. At every pixel (X,Y) * of the input image (or down-sized input image, see below) the function * executes meanshift iterations, that is, the pixel (X,Y) * neighborhood in the joint space-color hyperspace is considered:

* *

(x,y): X- sp <= x <= X+ sp, Y- sp <= y <= Y+ sp, ||(R,G,B)-(r,g,b)|| <= * sr

* *

where (R,G,B) and (r,g,b) are the vectors of color * components at (X,Y) and (x,y), respectively * (though, the algorithm does not depend on the color space used, so any * 3-component color space can be used instead). Over the neighborhood the * average spatial value (X',Y') and average color vector * (R',G',B') are found and they act as the neighborhood center on * the next iteration:

* *

(X,Y)~(X',Y'), (R,G,B)~(R',G',B').

* *

After the iterations over, the color components of the initial pixel (that * is, the pixel from where the iterations started) are set to the final value * (average color at the last iteration):

* *

I(X,Y) <- (R*,G*,B*)

* *

When maxLevel > 0, the gaussian pyramid of maxLevel+1 * levels is built, and the above procedure is run on the smallest layer first. * After that, the results are propagated to the larger layer and the iterations * are run again only on those pixels where the layer colors differ by more than * sr from the lower-resolution layer of the pyramid. That makes * boundaries of color regions sharper. Note that the results will be actually * different from the ones obtained by running the meanshift procedure on the * whole original image (i.e. when maxLevel==0).

* *

Note:

*
    *
  • An example using mean-shift image segmentation can be found at * opencv_source_code/samples/cpp/meanshift_segmentation.cpp *
* * @param src The source 8-bit, 3-channel image. * @param dst The destination image of the same format and the same size as the * source. * @param sp The spatial window radius. * @param sr The color window radius. * @param maxLevel Maximum level of the pyramid for the segmentation. * @param termcrit Termination criteria: when to stop meanshift iterations. * * @see org.opencv.imgproc.Imgproc.pyrMeanShiftFiltering */ public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr, int maxLevel, TermCriteria termcrit) { pyrMeanShiftFiltering_0(src.nativeObj, dst.nativeObj, sp, sr, maxLevel, termcrit.type, termcrit.maxCount, termcrit.epsilon); return; } /** *

Performs initial step of meanshift segmentation of an image.

* *

The function implements the filtering stage of meanshift segmentation, that * is, the output of the function is the filtered "posterized" image with color * gradients and fine-grain texture flattened. At every pixel (X,Y) * of the input image (or down-sized input image, see below) the function * executes meanshift iterations, that is, the pixel (X,Y) * neighborhood in the joint space-color hyperspace is considered:

* *

(x,y): X- sp <= x <= X+ sp, Y- sp <= y <= Y+ sp, ||(R,G,B)-(r,g,b)|| <= * sr

* *

where (R,G,B) and (r,g,b) are the vectors of color * components at (X,Y) and (x,y), respectively * (though, the algorithm does not depend on the color space used, so any * 3-component color space can be used instead). Over the neighborhood the * average spatial value (X',Y') and average color vector * (R',G',B') are found and they act as the neighborhood center on * the next iteration:

* *

(X,Y)~(X',Y'), (R,G,B)~(R',G',B').

* *

After the iterations over, the color components of the initial pixel (that * is, the pixel from where the iterations started) are set to the final value * (average color at the last iteration):

* *

I(X,Y) <- (R*,G*,B*)

* *

When maxLevel > 0, the gaussian pyramid of maxLevel+1 * levels is built, and the above procedure is run on the smallest layer first. * After that, the results are propagated to the larger layer and the iterations * are run again only on those pixels where the layer colors differ by more than * sr from the lower-resolution layer of the pyramid. That makes * boundaries of color regions sharper. Note that the results will be actually * different from the ones obtained by running the meanshift procedure on the * whole original image (i.e. when maxLevel==0).

* *

Note:

*
    *
  • An example using mean-shift image segmentation can be found at * opencv_source_code/samples/cpp/meanshift_segmentation.cpp *
* * @param src The source 8-bit, 3-channel image. * @param dst The destination image of the same format and the same size as the * source. * @param sp The spatial window radius. * @param sr The color window radius. * * @see org.opencv.imgproc.Imgproc.pyrMeanShiftFiltering */ public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr) { pyrMeanShiftFiltering_1(src.nativeObj, dst.nativeObj, sp, sr); return; } // // C++: void pyrUp(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) // /** *

Upsamples an image and then blurs it.

* *

By default, size of the output image is computed as Size(src.cols*2, * (src.rows*2), but in any case, the following conditions should be * satisfied:

* *

ltBR gt| dstsize.width -src.cols*2| <= (dstsize.width mod 2) * |dstsize.height -src.rows*2| <= (dstsize.height mod 2)

* *

The function performs the upsampling step of the Gaussian pyramid * construction, though it can actually be used to construct the Laplacian * pyramid. First, it upsamples the source image by injecting even zero rows and * columns and then convolves the result with the same kernel as in "pyrDown" * multiplied by 4.

* *

Note:

*
    *
  • (Python) An example of Laplacian Pyramid construction and merging can * be found at opencv_source_code/samples/python2/lappyr.py *
* * @param src input image. * @param dst output image. It has the specified size and the same type as * src. * @param dstsize size of the output image. * @param borderType Pixel extrapolation method (only BORDER_DEFAULT supported). * See "borderInterpolate" for details. * * @see org.opencv.imgproc.Imgproc.pyrUp */ public static void pyrUp(Mat src, Mat dst, Size dstsize, int borderType) { pyrUp_0(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height, borderType); return; } /** *

Upsamples an image and then blurs it.

* *

By default, size of the output image is computed as Size(src.cols*2, * (src.rows*2), but in any case, the following conditions should be * satisfied:

* *

ltBR gt| dstsize.width -src.cols*2| <= (dstsize.width mod 2) * |dstsize.height -src.rows*2| <= (dstsize.height mod 2)

* *

The function performs the upsampling step of the Gaussian pyramid * construction, though it can actually be used to construct the Laplacian * pyramid. First, it upsamples the source image by injecting even zero rows and * columns and then convolves the result with the same kernel as in "pyrDown" * multiplied by 4.

* *

Note:

*
    *
  • (Python) An example of Laplacian Pyramid construction and merging can * be found at opencv_source_code/samples/python2/lappyr.py *
* * @param src input image. * @param dst output image. It has the specified size and the same type as * src. * @param dstsize size of the output image. * * @see org.opencv.imgproc.Imgproc.pyrUp */ public static void pyrUp(Mat src, Mat dst, Size dstsize) { pyrUp_1(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height); return; } /** *

Upsamples an image and then blurs it.

* *

By default, size of the output image is computed as Size(src.cols*2, * (src.rows*2), but in any case, the following conditions should be * satisfied:

* *

ltBR gt| dstsize.width -src.cols*2| <= (dstsize.width mod 2) * |dstsize.height -src.rows*2| <= (dstsize.height mod 2)

* *

The function performs the upsampling step of the Gaussian pyramid * construction, though it can actually be used to construct the Laplacian * pyramid. First, it upsamples the source image by injecting even zero rows and * columns and then convolves the result with the same kernel as in "pyrDown" * multiplied by 4.

* *

Note:

*
    *
  • (Python) An example of Laplacian Pyramid construction and merging can * be found at opencv_source_code/samples/python2/lappyr.py *
* * @param src input image. * @param dst output image. It has the specified size and the same type as * src. * * @see org.opencv.imgproc.Imgproc.pyrUp */ public static void pyrUp(Mat src, Mat dst) { pyrUp_2(src.nativeObj, dst.nativeObj); return; } // // C++: void remap(Mat src, Mat& dst, Mat map1, Mat map2, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) // /** *

Applies a generic geometrical transformation to an image.

* *

The function remap transforms the source image using the * specified map:

* *

dst(x,y) = src(map_x(x,y),map_y(x,y))

* *

where values of pixels with non-integer coordinates are computed using one of * available interpolation methods. * map_x and map_y can be encoded as separate floating-point * maps in map_1 and map_2 respectively, or interleaved * floating-point maps of (x,y) in map_1, or fixed-point maps * created by using "convertMaps". The reason you might want to convert from * floating to fixed-point representations of a map is that they can yield much * faster (~2x) remapping operations. In the converted case, map_1 * contains pairs (cvFloor(x), cvFloor(y)) and map_2 * contains indices in a table of interpolation coefficients.

* *

This function cannot operate in-place.

* * @param src Source image. * @param dst Destination image. It has the same size as map1 and * the same type as src. * @param map1 The first map of either (x,y) points or just * x values having the type CV_16SC2, * CV_32FC1, or CV_32FC2. See "convertMaps" for * details on converting a floating point representation to fixed-point for * speed. * @param map2 The second map of y values having the type * CV_16UC1, CV_32FC1, or none (empty map if * map1 is (x,y) points), respectively. * @param interpolation Interpolation method (see "resize"). The method * INTER_AREA is not supported by this function. * @param borderMode Pixel extrapolation method (see "borderInterpolate"). When * borderMode=BORDER_TRANSPARENT, it means that the pixels in the * destination image that corresponds to the "outliers" in the source image are * not modified by the function. * @param borderValue Value used in case of a constant border. By default, it is * 0. * * @see org.opencv.imgproc.Imgproc.remap */ public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation, int borderMode, Scalar borderValue) { remap_0(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); return; } /** *

Applies a generic geometrical transformation to an image.

* *

The function remap transforms the source image using the * specified map:

* *

dst(x,y) = src(map_x(x,y),map_y(x,y))

* *

where values of pixels with non-integer coordinates are computed using one of * available interpolation methods. * map_x and map_y can be encoded as separate floating-point * maps in map_1 and map_2 respectively, or interleaved * floating-point maps of (x,y) in map_1, or fixed-point maps * created by using "convertMaps". The reason you might want to convert from * floating to fixed-point representations of a map is that they can yield much * faster (~2x) remapping operations. In the converted case, map_1 * contains pairs (cvFloor(x), cvFloor(y)) and map_2 * contains indices in a table of interpolation coefficients.

* *

This function cannot operate in-place.

* * @param src Source image. * @param dst Destination image. It has the same size as map1 and * the same type as src. * @param map1 The first map of either (x,y) points or just * x values having the type CV_16SC2, * CV_32FC1, or CV_32FC2. See "convertMaps" for * details on converting a floating point representation to fixed-point for * speed. * @param map2 The second map of y values having the type * CV_16UC1, CV_32FC1, or none (empty map if * map1 is (x,y) points), respectively. * @param interpolation Interpolation method (see "resize"). The method * INTER_AREA is not supported by this function. * * @see org.opencv.imgproc.Imgproc.remap */ public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation) { remap_1(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation); return; } // // C++: void resize(Mat src, Mat& dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR) // /** *

Resizes an image.

* *

The function resize resizes the image src down to * or up to the specified size.Note that the initial dst type or * size are not taken into account. Instead, the size and type are derived from * the src,dsize,fx, and fy. * If you want to resize src so that it fits the pre-created * dst, you may call the function as follows:

* *

// C++ code:

* *

// explicitly specify dsize=dst.size(); fx and fy will be computed from that.

* *

resize(src, dst, dst.size(), 0, 0, interpolation);

* *

If you want to decimate the image by factor of 2 in each direction, you can * call the function this way:

* *

// specify fx and fy and let the function compute the destination image size.

* *

resize(src, dst, Size(), 0.5, 0.5, interpolation);

* *

To shrink an image, it will generally look best with CV_INTER_AREA * interpolation, whereas to enlarge an image, it will generally look best with * CV_INTER_CUBIC (slow) or CV_INTER_LINEAR (faster but still looks OK). *

* * @param src input image. * @param dst output image; it has the size dsize (when it is * non-zero) or the size computed from src.size(), fx, * and fy; the type of dst is the same as of * src. * @param dsize output image size; if it equals zero, it is computed as: * *

dsize = Size(round(fx*src.cols), round(fy*src.rows))

* *

Either dsize or both fx and fy must be * non-zero.

* @param fx scale factor along the horizontal axis; when it equals 0, it is * computed as * *

(double)dsize.width/src.cols

* @param fy scale factor along the vertical axis; when it equals 0, it is * computed as * *

(double)dsize.height/src.rows

* @param interpolation interpolation method: *
    *
  • INTER_NEAREST - a nearest-neighbor interpolation *
  • INTER_LINEAR - a bilinear interpolation (used by default) *
  • INTER_AREA - resampling using pixel area relation. It may be a * preferred method for image decimation, as it gives moire'-free results. But * when the image is zoomed, it is similar to the INTER_NEAREST * method. *
  • INTER_CUBIC - a bicubic interpolation over 4x4 pixel neighborhood *
  • INTER_LANCZOS4 - a Lanczos interpolation over 8x8 pixel neighborhood *
* * @see org.opencv.imgproc.Imgproc.resize * @see org.opencv.imgproc.Imgproc#warpAffine * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.imgproc.Imgproc#warpPerspective */ public static void resize(Mat src, Mat dst, Size dsize, double fx, double fy, int interpolation) { resize_0(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx, fy, interpolation); return; } /** *

Resizes an image.

* *

The function resize resizes the image src down to * or up to the specified size.Note that the initial dst type or * size are not taken into account. Instead, the size and type are derived from * the src,dsize,fx, and fy. * If you want to resize src so that it fits the pre-created * dst, you may call the function as follows:

* *

// C++ code:

* *

// explicitly specify dsize=dst.size(); fx and fy will be computed from that.

* *

resize(src, dst, dst.size(), 0, 0, interpolation);

* *

If you want to decimate the image by factor of 2 in each direction, you can * call the function this way:

* *

// specify fx and fy and let the function compute the destination image size.

* *

resize(src, dst, Size(), 0.5, 0.5, interpolation);

* *

To shrink an image, it will generally look best with CV_INTER_AREA * interpolation, whereas to enlarge an image, it will generally look best with * CV_INTER_CUBIC (slow) or CV_INTER_LINEAR (faster but still looks OK). *

* * @param src input image. * @param dst output image; it has the size dsize (when it is * non-zero) or the size computed from src.size(), fx, * and fy; the type of dst is the same as of * src. * @param dsize output image size; if it equals zero, it is computed as: * *

dsize = Size(round(fx*src.cols), round(fy*src.rows))

* *

Either dsize or both fx and fy must be * non-zero.

* * @see org.opencv.imgproc.Imgproc.resize * @see org.opencv.imgproc.Imgproc#warpAffine * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.imgproc.Imgproc#warpPerspective */ public static void resize(Mat src, Mat dst, Size dsize) { resize_1(src.nativeObj, dst.nativeObj, dsize.width, dsize.height); return; } // // C++: void sepFilter2D(Mat src, Mat& dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) // /** *

Applies a separable linear filter to an image.

* *

The function applies a separable linear filter to the image. That is, first, * every row of src is filtered with the 1D kernel * kernelX. Then, every column of the result is filtered with the * 1D kernel kernelY. The final result shifted by delta * is stored in dst.

* * @param src Source image. * @param dst Destination image of the same size and the same number of channels * as src. * @param ddepth Destination image depth. The following combination of * src.depth() and ddepth are supported: *
    *
  • src.depth() = CV_8U, ddepth = * -1/CV_16S/CV_32F/CV_64F *
  • src.depth() = CV_16U/CV_16S, * ddepth = -1/CV_32F/CV_64F *
  • src.depth() = CV_32F, ddepth = * -1/CV_32F/CV_64F *
  • src.depth() = CV_64F, ddepth = * -1/CV_64F *
* *

when ddepth=-1, the destination image will have the same depth * as the source.

* @param kernelX Coefficients for filtering each row. * @param kernelY Coefficients for filtering each column. * @param anchor Anchor position within the kernel. The default value * (-1,-1) means that the anchor is at the kernel center. * @param delta Value added to the filtered results before storing them. * @param borderType Pixel extrapolation method. See "borderInterpolate" for * details. * * @see org.opencv.imgproc.Imgproc.sepFilter2D * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#Sobel * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#blur * @see org.opencv.imgproc.Imgproc#filter2D */ public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta, int borderType) { sepFilter2D_0(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y, delta, borderType); return; } /** *

Applies a separable linear filter to an image.

* *

The function applies a separable linear filter to the image. That is, first, * every row of src is filtered with the 1D kernel * kernelX. Then, every column of the result is filtered with the * 1D kernel kernelY. The final result shifted by delta * is stored in dst.

* * @param src Source image. * @param dst Destination image of the same size and the same number of channels * as src. * @param ddepth Destination image depth. The following combination of * src.depth() and ddepth are supported: *
    *
  • src.depth() = CV_8U, ddepth = * -1/CV_16S/CV_32F/CV_64F *
  • src.depth() = CV_16U/CV_16S, * ddepth = -1/CV_32F/CV_64F *
  • src.depth() = CV_32F, ddepth = * -1/CV_32F/CV_64F *
  • src.depth() = CV_64F, ddepth = * -1/CV_64F *
* *

when ddepth=-1, the destination image will have the same depth * as the source.

* @param kernelX Coefficients for filtering each row. * @param kernelY Coefficients for filtering each column. * @param anchor Anchor position within the kernel. The default value * (-1,-1) means that the anchor is at the kernel center. * @param delta Value added to the filtered results before storing them. * * @see org.opencv.imgproc.Imgproc.sepFilter2D * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#Sobel * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#blur * @see org.opencv.imgproc.Imgproc#filter2D */ public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta) { sepFilter2D_1(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y, delta); return; } /** *

Applies a separable linear filter to an image.

* *

The function applies a separable linear filter to the image. That is, first, * every row of src is filtered with the 1D kernel * kernelX. Then, every column of the result is filtered with the * 1D kernel kernelY. The final result shifted by delta * is stored in dst.

* * @param src Source image. * @param dst Destination image of the same size and the same number of channels * as src. * @param ddepth Destination image depth. The following combination of * src.depth() and ddepth are supported: *
    *
  • src.depth() = CV_8U, ddepth = * -1/CV_16S/CV_32F/CV_64F *
  • src.depth() = CV_16U/CV_16S, * ddepth = -1/CV_32F/CV_64F *
  • src.depth() = CV_32F, ddepth = * -1/CV_32F/CV_64F *
  • src.depth() = CV_64F, ddepth = * -1/CV_64F *
* *

when ddepth=-1, the destination image will have the same depth * as the source.

* @param kernelX Coefficients for filtering each row. * @param kernelY Coefficients for filtering each column. * * @see org.opencv.imgproc.Imgproc.sepFilter2D * @see org.opencv.imgproc.Imgproc#GaussianBlur * @see org.opencv.imgproc.Imgproc#Sobel * @see org.opencv.imgproc.Imgproc#boxFilter * @see org.opencv.imgproc.Imgproc#blur * @see org.opencv.imgproc.Imgproc#filter2D */ public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY) { sepFilter2D_2(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj); return; } // // C++: double threshold(Mat src, Mat& dst, double thresh, double maxval, int type) // /** *

Applies a fixed-level threshold to each array element.

* *

The function applies fixed-level thresholding to a single-channel array. The * function is typically used to get a bi-level (binary) image out of a * grayscale image ("compare" could be also used for this purpose) or for * removing a noise, that is, filtering out pixels with too small or too large * values. There are several types of thresholding supported by the function. * They are determined by type :

*
    *
  • THRESH_BINARY *
* *

dst(x,y) = maxval if src(x,y) > thresh; 0 otherwise

* *
    *
  • THRESH_BINARY_INV *
* *

dst(x,y) = 0 if src(x,y) > thresh; maxval otherwise

* *
    *
  • THRESH_TRUNC *
* *

dst(x,y) = threshold if src(x,y) > thresh; src(x,y) otherwise

* *
    *
  • THRESH_TOZERO *
* *

dst(x,y) = src(x,y) if src(x,y) > thresh; 0 otherwise

* *
    *
  • THRESH_TOZERO_INV *
* *

dst(x,y) = 0 if src(x,y) > thresh; src(x,y) otherwise

* *

Also, the special value THRESH_OTSU may be combined with one of * the above values. In this case, the function determines the optimal threshold * value using the Otsu's algorithm and uses it instead of the specified * thresh. * The function returns the computed threshold value. * Currently, the Otsu's method is implemented only for 8-bit images.

* * @param src input array (single-channel, 8-bit or 32-bit floating point). * @param dst output array of the same size and type as src. * @param thresh threshold value. * @param maxval maximum value to use with the THRESH_BINARY and * THRESH_BINARY_INV thresholding types. * @param type thresholding type (see the details below). * * @see org.opencv.imgproc.Imgproc.threshold * @see org.opencv.imgproc.Imgproc#findContours * @see org.opencv.core.Core#max * @see org.opencv.imgproc.Imgproc#adaptiveThreshold * @see org.opencv.core.Core#compare * @see org.opencv.core.Core#min */ public static double threshold(Mat src, Mat dst, double thresh, double maxval, int type) { double retVal = threshold_0(src.nativeObj, dst.nativeObj, thresh, maxval, type); return retVal; } // // C++: void undistort(Mat src, Mat& dst, Mat cameraMatrix, Mat distCoeffs, Mat newCameraMatrix = Mat()) // /** *

Transforms an image to compensate for lens distortion.

* *

The function transforms an image to compensate radial and tangential lens * distortion.

* *

The function is simply a combination of "initUndistortRectifyMap" (with unity * R) and "remap" (with bilinear interpolation). See the former * function for details of the transformation being performed.

* *

Those pixels in the destination image, for which there is no correspondent * pixels in the source image, are filled with zeros (black color).

* *

A particular subset of the source image that will be visible in the corrected * image can be regulated by newCameraMatrix. You can use * "getOptimalNewCameraMatrix" to compute the appropriate newCameraMatrix * depending on your requirements.

* *

The camera matrix and the distortion parameters can be determined using * "calibrateCamera". If the resolution of images is different from the * resolution used at the calibration stage, f_x, f_y, c_x and * c_y need to be scaled accordingly, while the distortion coefficients * remain the same.

* * @param src Input (distorted) image. * @param dst Output (corrected) image that has the same size and type as * src. * @param cameraMatrix Input camera matrix A = *

|f_x 0 c_x| * |0 f_y c_y| * |0 0 1| * .

* @param distCoeffs Input vector of distortion coefficients (k_1, k_2, p_1, * p_2[, k_3[, k_4, k_5, k_6]]) of 4, 5, or 8 elements. If the vector is * NULL/empty, the zero distortion coefficients are assumed. * @param newCameraMatrix Camera matrix of the distorted image. By default, it * is the same as cameraMatrix but you may additionally scale and * shift the result by using a different matrix. * * @see org.opencv.imgproc.Imgproc.undistort */ public static void undistort(Mat src, Mat dst, Mat cameraMatrix, Mat distCoeffs, Mat newCameraMatrix) { undistort_0(src.nativeObj, dst.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj, newCameraMatrix.nativeObj); return; } /** *

Transforms an image to compensate for lens distortion.

* *

The function transforms an image to compensate radial and tangential lens * distortion.

* *

The function is simply a combination of "initUndistortRectifyMap" (with unity * R) and "remap" (with bilinear interpolation). See the former * function for details of the transformation being performed.

* *

Those pixels in the destination image, for which there is no correspondent * pixels in the source image, are filled with zeros (black color).

* *

A particular subset of the source image that will be visible in the corrected * image can be regulated by newCameraMatrix. You can use * "getOptimalNewCameraMatrix" to compute the appropriate newCameraMatrix * depending on your requirements.

* *

The camera matrix and the distortion parameters can be determined using * "calibrateCamera". If the resolution of images is different from the * resolution used at the calibration stage, f_x, f_y, c_x and * c_y need to be scaled accordingly, while the distortion coefficients * remain the same.

* * @param src Input (distorted) image. * @param dst Output (corrected) image that has the same size and type as * src. * @param cameraMatrix Input camera matrix A = *

|f_x 0 c_x| * |0 f_y c_y| * |0 0 1| * .

* @param distCoeffs Input vector of distortion coefficients (k_1, k_2, p_1, * p_2[, k_3[, k_4, k_5, k_6]]) of 4, 5, or 8 elements. If the vector is * NULL/empty, the zero distortion coefficients are assumed. * * @see org.opencv.imgproc.Imgproc.undistort */ public static void undistort(Mat src, Mat dst, Mat cameraMatrix, Mat distCoeffs) { undistort_1(src.nativeObj, dst.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj); return; } // // C++: void undistortPoints(vector_Point2f src, vector_Point2f& dst, Mat cameraMatrix, Mat distCoeffs, Mat R = Mat(), Mat P = Mat()) // /** *

Computes the ideal point coordinates from the observed point coordinates.

* *

The function is similar to "undistort" and "initUndistortRectifyMap" but it * operates on a sparse set of points instead of a raster image. Also the * function performs a reverse transformation to"projectPoints". In case of a 3D * object, it does not reconstruct its 3D coordinates, but for a planar object, * it does, up to a translation vector, if the proper R is * specified. *

* *

// C++ code:

* *

// (u,v) is the input point, (u', v') is the output point

* *

// camera_matrix=[fx 0 cx; 0 fy cy; 0 0 1]

* *

// P=[fx' 0 cx' tx; 0 fy' cy' ty; 0 0 1 tz]

* *

x" = (u - cx)/fx

* *

y" = (v - cy)/fy

* *

(x',y') = undistort(x",y",dist_coeffs)

* *

[X,Y,W]T = R*[x' y' 1]T

* *

x = X/W, y = Y/W

* *

// only performed if P=[fx' 0 cx' [tx]; 0 fy' cy' [ty]; 0 0 1 [tz]] is * specified

* *

u' = x*fx' + cx'

* *

v' = y*fy' + cy',

* *

where undistort() is an approximate iterative algorithm that * estimates the normalized original point coordinates out of the normalized * distorted point coordinates ("normalized" means that the coordinates do not * depend on the camera matrix). *

* *

The function can be used for both a stereo camera head or a monocular camera * (when R is empty).

* * @param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or * CV_64FC2). * @param dst Output ideal point coordinates after undistortion and reverse * perspective transformation. If matrix P is identity or omitted, * dst will contain normalized point coordinates. * @param cameraMatrix Camera matrix *

|f_x 0 c_x| * |0 f_y c_y| * |0 0 1| * .

* @param distCoeffs Input vector of distortion coefficients (k_1, k_2, p_1, * p_2[, k_3[, k_4, k_5, k_6]]) of 4, 5, or 8 elements. If the vector is * NULL/empty, the zero distortion coefficients are assumed. * @param R Rectification transformation in the object space (3x3 matrix). * R1 or R2 computed by "stereoRectify" can be passed * here. If the matrix is empty, the identity transformation is used. * @param P New camera matrix (3x3) or new projection matrix (3x4). * P1 or P2 computed by "stereoRectify" can be passed * here. If the matrix is empty, the identity new camera matrix is used. * * @see org.opencv.imgproc.Imgproc.undistortPoints */ public static void undistortPoints(MatOfPoint2f src, MatOfPoint2f dst, Mat cameraMatrix, Mat distCoeffs, Mat R, Mat P) { Mat src_mat = src; Mat dst_mat = dst; undistortPoints_0(src_mat.nativeObj, dst_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj, R.nativeObj, P.nativeObj); return; } /** *

Computes the ideal point coordinates from the observed point coordinates.

* *

The function is similar to "undistort" and "initUndistortRectifyMap" but it * operates on a sparse set of points instead of a raster image. Also the * function performs a reverse transformation to"projectPoints". In case of a 3D * object, it does not reconstruct its 3D coordinates, but for a planar object, * it does, up to a translation vector, if the proper R is * specified. *

* *

// C++ code:

* *

// (u,v) is the input point, (u', v') is the output point

* *

// camera_matrix=[fx 0 cx; 0 fy cy; 0 0 1]

* *

// P=[fx' 0 cx' tx; 0 fy' cy' ty; 0 0 1 tz]

* *

x" = (u - cx)/fx

* *

y" = (v - cy)/fy

* *

(x',y') = undistort(x",y",dist_coeffs)

* *

[X,Y,W]T = R*[x' y' 1]T

* *

x = X/W, y = Y/W

* *

// only performed if P=[fx' 0 cx' [tx]; 0 fy' cy' [ty]; 0 0 1 [tz]] is * specified

* *

u' = x*fx' + cx'

* *

v' = y*fy' + cy',

* *

where undistort() is an approximate iterative algorithm that * estimates the normalized original point coordinates out of the normalized * distorted point coordinates ("normalized" means that the coordinates do not * depend on the camera matrix). *

* *

The function can be used for both a stereo camera head or a monocular camera * (when R is empty).

* * @param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or * CV_64FC2). * @param dst Output ideal point coordinates after undistortion and reverse * perspective transformation. If matrix P is identity or omitted, * dst will contain normalized point coordinates. * @param cameraMatrix Camera matrix *

|f_x 0 c_x| * |0 f_y c_y| * |0 0 1| * .

* @param distCoeffs Input vector of distortion coefficients (k_1, k_2, p_1, * p_2[, k_3[, k_4, k_5, k_6]]) of 4, 5, or 8 elements. If the vector is * NULL/empty, the zero distortion coefficients are assumed. * * @see org.opencv.imgproc.Imgproc.undistortPoints */ public static void undistortPoints(MatOfPoint2f src, MatOfPoint2f dst, Mat cameraMatrix, Mat distCoeffs) { Mat src_mat = src; Mat dst_mat = dst; undistortPoints_1(src_mat.nativeObj, dst_mat.nativeObj, cameraMatrix.nativeObj, distCoeffs.nativeObj); return; } // // C++: void warpAffine(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) // /** *

Applies an affine transformation to an image.

* *

The function warpAffine transforms the source image using the * specified matrix:

* *

dst(x,y) = src(M _11 x + M _12 y + M _13, M _21 x + M _22 y + M _23)

* *

when the flag WARP_INVERSE_MAP is set. Otherwise, the * transformation is first inverted with "invertAffineTransform" and then put in * the formula above instead of M. * The function cannot operate in-place.

* *

Note: cvGetQuadrangleSubPix is similar to cvWarpAffine, * but the outliers are extrapolated using replication border mode.

* * @param src input image. * @param dst output image that has the size dsize and the same * type as src. * @param M 2x 3 transformation matrix. * @param dsize size of the output image. * @param flags combination of interpolation methods (see "resize") and the * optional flag WARP_INVERSE_MAP that means that M is * the inverse transformation (dst->src). * @param borderMode pixel extrapolation method (see "borderInterpolate"); when * borderMode=BORDER_TRANSPARENT, it means that the pixels in the * destination image corresponding to the "outliers" in the source image are not * modified by the function. * @param borderValue value used in case of a constant border; by default, it is * 0. * * @see org.opencv.imgproc.Imgproc.warpAffine * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.imgproc.Imgproc#warpPerspective * @see org.opencv.imgproc.Imgproc#getRectSubPix * @see org.opencv.imgproc.Imgproc#resize * @see org.opencv.core.Core#transform */ public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode, Scalar borderValue) { warpAffine_0(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); return; } /** *

Applies an affine transformation to an image.

* *

The function warpAffine transforms the source image using the * specified matrix:

* *

dst(x,y) = src(M _11 x + M _12 y + M _13, M _21 x + M _22 y + M _23)

* *

when the flag WARP_INVERSE_MAP is set. Otherwise, the * transformation is first inverted with "invertAffineTransform" and then put in * the formula above instead of M. * The function cannot operate in-place.

* *

Note: cvGetQuadrangleSubPix is similar to cvWarpAffine, * but the outliers are extrapolated using replication border mode.

* * @param src input image. * @param dst output image that has the size dsize and the same * type as src. * @param M 2x 3 transformation matrix. * @param dsize size of the output image. * @param flags combination of interpolation methods (see "resize") and the * optional flag WARP_INVERSE_MAP that means that M is * the inverse transformation (dst->src). * * @see org.opencv.imgproc.Imgproc.warpAffine * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.imgproc.Imgproc#warpPerspective * @see org.opencv.imgproc.Imgproc#getRectSubPix * @see org.opencv.imgproc.Imgproc#resize * @see org.opencv.core.Core#transform */ public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags) { warpAffine_1(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags); return; } /** *

Applies an affine transformation to an image.

* *

The function warpAffine transforms the source image using the * specified matrix:

* *

dst(x,y) = src(M _11 x + M _12 y + M _13, M _21 x + M _22 y + M _23)

* *

when the flag WARP_INVERSE_MAP is set. Otherwise, the * transformation is first inverted with "invertAffineTransform" and then put in * the formula above instead of M. * The function cannot operate in-place.

* *

Note: cvGetQuadrangleSubPix is similar to cvWarpAffine, * but the outliers are extrapolated using replication border mode.

* * @param src input image. * @param dst output image that has the size dsize and the same * type as src. * @param M 2x 3 transformation matrix. * @param dsize size of the output image. * * @see org.opencv.imgproc.Imgproc.warpAffine * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.imgproc.Imgproc#warpPerspective * @see org.opencv.imgproc.Imgproc#getRectSubPix * @see org.opencv.imgproc.Imgproc#resize * @see org.opencv.core.Core#transform */ public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize) { warpAffine_2(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height); return; } // // C++: void warpPerspective(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) // /** *

Applies a perspective transformation to an image.

* *

The function warpPerspective transforms the source image using * the specified matrix:

* *

dst(x,y) = src((M_11 x + M_12 y + M_13)/(M_(31) x + M_32 y + * M_33),<BR>(M_21 x + M_22 y + M_23)/(M_(31) x + M_32 y + M_33))

* *

when the flag WARP_INVERSE_MAP is set. Otherwise, the * transformation is first inverted with "invert" and then put in the formula * above instead of M. * The function cannot operate in-place.

* * @param src input image. * @param dst output image that has the size dsize and the same * type as src. * @param M 3x 3 transformation matrix. * @param dsize size of the output image. * @param flags combination of interpolation methods (INTER_LINEAR * or INTER_NEAREST) and the optional flag WARP_INVERSE_MAP, * that sets M as the inverse transformation (dst->src). * @param borderMode pixel extrapolation method (BORDER_CONSTANT or * BORDER_REPLICATE). * @param borderValue value used in case of a constant border; by default, it * equals 0. * * @see org.opencv.imgproc.Imgproc.warpPerspective * @see org.opencv.imgproc.Imgproc#warpAffine * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.core.Core#perspectiveTransform * @see org.opencv.imgproc.Imgproc#getRectSubPix * @see org.opencv.imgproc.Imgproc#resize */ public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode, Scalar borderValue) { warpPerspective_0(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); return; } /** *

Applies a perspective transformation to an image.

* *

The function warpPerspective transforms the source image using * the specified matrix:

* *

dst(x,y) = src((M_11 x + M_12 y + M_13)/(M_(31) x + M_32 y + * M_33),<BR>(M_21 x + M_22 y + M_23)/(M_(31) x + M_32 y + M_33))

* *

when the flag WARP_INVERSE_MAP is set. Otherwise, the * transformation is first inverted with "invert" and then put in the formula * above instead of M. * The function cannot operate in-place.

* * @param src input image. * @param dst output image that has the size dsize and the same * type as src. * @param M 3x 3 transformation matrix. * @param dsize size of the output image. * @param flags combination of interpolation methods (INTER_LINEAR * or INTER_NEAREST) and the optional flag WARP_INVERSE_MAP, * that sets M as the inverse transformation (dst->src). * * @see org.opencv.imgproc.Imgproc.warpPerspective * @see org.opencv.imgproc.Imgproc#warpAffine * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.core.Core#perspectiveTransform * @see org.opencv.imgproc.Imgproc#getRectSubPix * @see org.opencv.imgproc.Imgproc#resize */ public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags) { warpPerspective_1(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags); return; } /** *

Applies a perspective transformation to an image.

* *

The function warpPerspective transforms the source image using * the specified matrix:

* *

dst(x,y) = src((M_11 x + M_12 y + M_13)/(M_(31) x + M_32 y + * M_33),<BR>(M_21 x + M_22 y + M_23)/(M_(31) x + M_32 y + M_33))

* *

when the flag WARP_INVERSE_MAP is set. Otherwise, the * transformation is first inverted with "invert" and then put in the formula * above instead of M. * The function cannot operate in-place.

* * @param src input image. * @param dst output image that has the size dsize and the same * type as src. * @param M 3x 3 transformation matrix. * @param dsize size of the output image. * * @see org.opencv.imgproc.Imgproc.warpPerspective * @see org.opencv.imgproc.Imgproc#warpAffine * @see org.opencv.imgproc.Imgproc#remap * @see org.opencv.core.Core#perspectiveTransform * @see org.opencv.imgproc.Imgproc#getRectSubPix * @see org.opencv.imgproc.Imgproc#resize */ public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize) { warpPerspective_2(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height); return; } // // C++: void watershed(Mat image, Mat& markers) // /** *

Performs a marker-based image segmentation using the watershed algorithm.

* *

The function implements one of the variants of watershed, non-parametric * marker-based segmentation algorithm, described in [Meyer92].

* *

Before passing the image to the function, you have to roughly outline the * desired regions in the image markers with positive * (>0) indices. So, every region is represented as one or more * connected components with the pixel values 1, 2, 3, and so on. Such markers * can be retrieved from a binary mask using "findContours" and "drawContours" * (see the watershed.cpp demo). The markers are "seeds" of the * future image regions. All the other pixels in markers, whose * relation to the outlined regions is not known and should be defined by the * algorithm, should be set to 0's. In the function output, each pixel in * markers is set to a value of the "seed" components or to -1 at boundaries * between the regions.

* *

Visual demonstration and usage example of the function can be found in the * OpenCV samples directory (see the watershed.cpp demo).

* *

Note: Any two neighbor connected components are not necessarily separated by * a watershed boundary (-1's pixels); for example, they can touch each other in * the initial marker image passed to the function.

* *

Note:

*
    *
  • An example using the watershed algorithm can be found at * opencv_source_code/samples/cpp/watershed.cpp *
  • (Python) An example using the watershed algorithm can be found at * opencv_source_code/samples/python2/watershed.py *
* * @param image Input 8-bit 3-channel image. * @param markers Input/output 32-bit single-channel image (map) of markers. It * should have the same size as image. * * @see org.opencv.imgproc.Imgproc.watershed * @see org.opencv.imgproc.Imgproc#findContours */ public static void watershed(Mat image, Mat markers) { watershed_0(image.nativeObj, markers.nativeObj); return; } // C++: void Canny(Mat image, Mat& edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false) private static native void Canny_0(long image_nativeObj, long edges_nativeObj, double threshold1, double threshold2, int apertureSize, boolean L2gradient); private static native void Canny_1(long image_nativeObj, long edges_nativeObj, double threshold1, double threshold2); // C++: void GaussianBlur(Mat src, Mat& dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT) private static native void GaussianBlur_0(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaX, double sigmaY, int borderType); private static native void GaussianBlur_1(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaX, double sigmaY); private static native void GaussianBlur_2(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaX); // C++: void HoughCircles(Mat image, Mat& circles, int method, double dp, double minDist, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0) private static native void HoughCircles_0(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius); private static native void HoughCircles_1(long image_nativeObj, long circles_nativeObj, int method, double dp, double minDist); // C++: void HoughLines(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0) private static native void HoughLines_0(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double srn, double stn); private static native void HoughLines_1(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold); // C++: void HoughLinesP(Mat image, Mat& lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap = 0) private static native void HoughLinesP_0(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold, double minLineLength, double maxLineGap); private static native void HoughLinesP_1(long image_nativeObj, long lines_nativeObj, double rho, double theta, int threshold); // C++: void HuMoments(Moments m, Mat& hu) private static native void HuMoments_0(long m_nativeObj, long hu_nativeObj); // C++: void Laplacian(Mat src, Mat& dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) private static native void Laplacian_0(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize, double scale, double delta, int borderType); private static native void Laplacian_1(long src_nativeObj, long dst_nativeObj, int ddepth, int ksize, double scale, double delta); private static native void Laplacian_2(long src_nativeObj, long dst_nativeObj, int ddepth); // C++: double PSNR(Mat src1, Mat src2) private static native double PSNR_0(long src1_nativeObj, long src2_nativeObj); // C++: void Scharr(Mat src, Mat& dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) private static native void Scharr_0(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, double scale, double delta, int borderType); private static native void Scharr_1(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, double scale, double delta); private static native void Scharr_2(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy); // C++: void Sobel(Mat src, Mat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) private static native void Sobel_0(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType); private static native void Sobel_1(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale, double delta); private static native void Sobel_2(long src_nativeObj, long dst_nativeObj, int ddepth, int dx, int dy); // C++: void accumulate(Mat src, Mat& dst, Mat mask = Mat()) private static native void accumulate_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj); private static native void accumulate_1(long src_nativeObj, long dst_nativeObj); // C++: void accumulateProduct(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) private static native void accumulateProduct_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj); private static native void accumulateProduct_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj); // C++: void accumulateSquare(Mat src, Mat& dst, Mat mask = Mat()) private static native void accumulateSquare_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj); private static native void accumulateSquare_1(long src_nativeObj, long dst_nativeObj); // C++: void accumulateWeighted(Mat src, Mat& dst, double alpha, Mat mask = Mat()) private static native void accumulateWeighted_0(long src_nativeObj, long dst_nativeObj, double alpha, long mask_nativeObj); private static native void accumulateWeighted_1(long src_nativeObj, long dst_nativeObj, double alpha); // C++: void adaptiveBilateralFilter(Mat src, Mat& dst, Size ksize, double sigmaSpace, double maxSigmaColor = 20.0, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT) private static native void adaptiveBilateralFilter_0(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaSpace, double maxSigmaColor, double anchor_x, double anchor_y, int borderType); private static native void adaptiveBilateralFilter_1(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaSpace, double maxSigmaColor, double anchor_x, double anchor_y); private static native void adaptiveBilateralFilter_2(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double sigmaSpace); // C++: void adaptiveThreshold(Mat src, Mat& dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) private static native void adaptiveThreshold_0(long src_nativeObj, long dst_nativeObj, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C); // C++: void approxPolyDP(vector_Point2f curve, vector_Point2f& approxCurve, double epsilon, bool closed) private static native void approxPolyDP_0(long curve_mat_nativeObj, long approxCurve_mat_nativeObj, double epsilon, boolean closed); // C++: double arcLength(vector_Point2f curve, bool closed) private static native double arcLength_0(long curve_mat_nativeObj, boolean closed); // C++: void bilateralFilter(Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT) private static native void bilateralFilter_0(long src_nativeObj, long dst_nativeObj, int d, double sigmaColor, double sigmaSpace, int borderType); private static native void bilateralFilter_1(long src_nativeObj, long dst_nativeObj, int d, double sigmaColor, double sigmaSpace); // C++: void blur(Mat src, Mat& dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT) private static native void blur_0(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double anchor_x, double anchor_y, int borderType); private static native void blur_1(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height, double anchor_x, double anchor_y); private static native void blur_2(long src_nativeObj, long dst_nativeObj, double ksize_width, double ksize_height); // C++: int borderInterpolate(int p, int len, int borderType) private static native int borderInterpolate_0(int p, int len, int borderType); // C++: Rect boundingRect(vector_Point points) private static native double[] boundingRect_0(long points_mat_nativeObj); // C++: void boxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), bool normalize = true, int borderType = BORDER_DEFAULT) private static native void boxFilter_0(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize, int borderType); private static native void boxFilter_1(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, boolean normalize); private static native void boxFilter_2(long src_nativeObj, long dst_nativeObj, int ddepth, double ksize_width, double ksize_height); // C++: void calcBackProject(vector_Mat images, vector_int channels, Mat hist, Mat& dst, vector_float ranges, double scale) private static native void calcBackProject_0(long images_mat_nativeObj, long channels_mat_nativeObj, long hist_nativeObj, long dst_nativeObj, long ranges_mat_nativeObj, double scale); // C++: void calcHist(vector_Mat images, vector_int channels, Mat mask, Mat& hist, vector_int histSize, vector_float ranges, bool accumulate = false) private static native void calcHist_0(long images_mat_nativeObj, long channels_mat_nativeObj, long mask_nativeObj, long hist_nativeObj, long histSize_mat_nativeObj, long ranges_mat_nativeObj, boolean accumulate); private static native void calcHist_1(long images_mat_nativeObj, long channels_mat_nativeObj, long mask_nativeObj, long hist_nativeObj, long histSize_mat_nativeObj, long ranges_mat_nativeObj); // C++: double compareHist(Mat H1, Mat H2, int method) private static native double compareHist_0(long H1_nativeObj, long H2_nativeObj, int method); // C++: double contourArea(Mat contour, bool oriented = false) private static native double contourArea_0(long contour_nativeObj, boolean oriented); private static native double contourArea_1(long contour_nativeObj); // C++: void convertMaps(Mat map1, Mat map2, Mat& dstmap1, Mat& dstmap2, int dstmap1type, bool nninterpolation = false) private static native void convertMaps_0(long map1_nativeObj, long map2_nativeObj, long dstmap1_nativeObj, long dstmap2_nativeObj, int dstmap1type, boolean nninterpolation); private static native void convertMaps_1(long map1_nativeObj, long map2_nativeObj, long dstmap1_nativeObj, long dstmap2_nativeObj, int dstmap1type); // C++: void convexHull(vector_Point points, vector_int& hull, bool clockwise = false, _hidden_ returnPoints = true) private static native void convexHull_0(long points_mat_nativeObj, long hull_mat_nativeObj, boolean clockwise); private static native void convexHull_1(long points_mat_nativeObj, long hull_mat_nativeObj); // C++: void convexityDefects(vector_Point contour, vector_int convexhull, vector_Vec4i& convexityDefects) private static native void convexityDefects_0(long contour_mat_nativeObj, long convexhull_mat_nativeObj, long convexityDefects_mat_nativeObj); // C++: void copyMakeBorder(Mat src, Mat& dst, int top, int bottom, int left, int right, int borderType, Scalar value = Scalar()) private static native void copyMakeBorder_0(long src_nativeObj, long dst_nativeObj, int top, int bottom, int left, int right, int borderType, double value_val0, double value_val1, double value_val2, double value_val3); private static native void copyMakeBorder_1(long src_nativeObj, long dst_nativeObj, int top, int bottom, int left, int right, int borderType); // C++: void cornerEigenValsAndVecs(Mat src, Mat& dst, int blockSize, int ksize, int borderType = BORDER_DEFAULT) private static native void cornerEigenValsAndVecs_0(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, int borderType); private static native void cornerEigenValsAndVecs_1(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize); // C++: void cornerHarris(Mat src, Mat& dst, int blockSize, int ksize, double k, int borderType = BORDER_DEFAULT) private static native void cornerHarris_0(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, double k, int borderType); private static native void cornerHarris_1(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, double k); // C++: void cornerMinEigenVal(Mat src, Mat& dst, int blockSize, int ksize = 3, int borderType = BORDER_DEFAULT) private static native void cornerMinEigenVal_0(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize, int borderType); private static native void cornerMinEigenVal_1(long src_nativeObj, long dst_nativeObj, int blockSize, int ksize); private static native void cornerMinEigenVal_2(long src_nativeObj, long dst_nativeObj, int blockSize); // C++: void cornerSubPix(Mat image, vector_Point2f& corners, Size winSize, Size zeroZone, TermCriteria criteria) private static native void cornerSubPix_0(long image_nativeObj, long corners_mat_nativeObj, double winSize_width, double winSize_height, double zeroZone_width, double zeroZone_height, int criteria_type, int criteria_maxCount, double criteria_epsilon); // C++: void createHanningWindow(Mat& dst, Size winSize, int type) private static native void createHanningWindow_0(long dst_nativeObj, double winSize_width, double winSize_height, int type); // C++: void cvtColor(Mat src, Mat& dst, int code, int dstCn = 0) private static native void cvtColor_0(long src_nativeObj, long dst_nativeObj, int code, int dstCn); private static native void cvtColor_1(long src_nativeObj, long dst_nativeObj, int code); // C++: void dilate(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) private static native void dilate_0(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); private static native void dilate_1(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations); private static native void dilate_2(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj); // C++: void distanceTransform(Mat src, Mat& dst, int distanceType, int maskSize) private static native void distanceTransform_0(long src_nativeObj, long dst_nativeObj, int distanceType, int maskSize); // C++: void distanceTransform(Mat src, Mat& dst, Mat& labels, int distanceType, int maskSize, int labelType = DIST_LABEL_CCOMP) private static native void distanceTransformWithLabels_0(long src_nativeObj, long dst_nativeObj, long labels_nativeObj, int distanceType, int maskSize, int labelType); private static native void distanceTransformWithLabels_1(long src_nativeObj, long dst_nativeObj, long labels_nativeObj, int distanceType, int maskSize); // C++: void drawContours(Mat& image, vector_vector_Point contours, int contourIdx, Scalar color, int thickness = 1, int lineType = 8, Mat hierarchy = Mat(), int maxLevel = INT_MAX, Point offset = Point()) private static native void drawContours_0(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, long hierarchy_nativeObj, int maxLevel, double offset_x, double offset_y); private static native void drawContours_1(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); private static native void drawContours_2(long image_nativeObj, long contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void equalizeHist(Mat src, Mat& dst) private static native void equalizeHist_0(long src_nativeObj, long dst_nativeObj); // C++: void erode(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) private static native void erode_0(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); private static native void erode_1(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations); private static native void erode_2(long src_nativeObj, long dst_nativeObj, long kernel_nativeObj); // C++: void filter2D(Mat src, Mat& dst, int ddepth, Mat kernel, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) private static native void filter2D_0(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj, double anchor_x, double anchor_y, double delta, int borderType); private static native void filter2D_1(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj, double anchor_x, double anchor_y, double delta); private static native void filter2D_2(long src_nativeObj, long dst_nativeObj, int ddepth, long kernel_nativeObj); // C++: void findContours(Mat& image, vector_vector_Point& contours, Mat& hierarchy, int mode, int method, Point offset = Point()) private static native void findContours_0(long image_nativeObj, long contours_mat_nativeObj, long hierarchy_nativeObj, int mode, int method, double offset_x, double offset_y); private static native void findContours_1(long image_nativeObj, long contours_mat_nativeObj, long hierarchy_nativeObj, int mode, int method); // C++: RotatedRect fitEllipse(vector_Point2f points) private static native double[] fitEllipse_0(long points_mat_nativeObj); // C++: void fitLine(Mat points, Mat& line, int distType, double param, double reps, double aeps) private static native void fitLine_0(long points_nativeObj, long line_nativeObj, int distType, double param, double reps, double aeps); // C++: int floodFill(Mat& image, Mat& mask, Point seedPoint, Scalar newVal, Rect* rect = 0, Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), int flags = 4) private static native int floodFill_0(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3, double upDiff_val0, double upDiff_val1, double upDiff_val2, double upDiff_val3, int flags); private static native int floodFill_1(long image_nativeObj, long mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3); // C++: Mat getAffineTransform(vector_Point2f src, vector_Point2f dst) private static native long getAffineTransform_0(long src_mat_nativeObj, long dst_mat_nativeObj); // C++: Mat getDefaultNewCameraMatrix(Mat cameraMatrix, Size imgsize = Size(), bool centerPrincipalPoint = false) private static native long getDefaultNewCameraMatrix_0(long cameraMatrix_nativeObj, double imgsize_width, double imgsize_height, boolean centerPrincipalPoint); private static native long getDefaultNewCameraMatrix_1(long cameraMatrix_nativeObj); // C++: void getDerivKernels(Mat& kx, Mat& ky, int dx, int dy, int ksize, bool normalize = false, int ktype = CV_32F) private static native void getDerivKernels_0(long kx_nativeObj, long ky_nativeObj, int dx, int dy, int ksize, boolean normalize, int ktype); private static native void getDerivKernels_1(long kx_nativeObj, long ky_nativeObj, int dx, int dy, int ksize); // C++: Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi = CV_PI*0.5, int ktype = CV_64F) private static native long getGaborKernel_0(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma, double psi, int ktype); private static native long getGaborKernel_1(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma); // C++: Mat getGaussianKernel(int ksize, double sigma, int ktype = CV_64F) private static native long getGaussianKernel_0(int ksize, double sigma, int ktype); private static native long getGaussianKernel_1(int ksize, double sigma); // C++: Mat getPerspectiveTransform(Mat src, Mat dst) private static native long getPerspectiveTransform_0(long src_nativeObj, long dst_nativeObj); // C++: void getRectSubPix(Mat image, Size patchSize, Point2f center, Mat& patch, int patchType = -1) private static native void getRectSubPix_0(long image_nativeObj, double patchSize_width, double patchSize_height, double center_x, double center_y, long patch_nativeObj, int patchType); private static native void getRectSubPix_1(long image_nativeObj, double patchSize_width, double patchSize_height, double center_x, double center_y, long patch_nativeObj); // C++: Mat getRotationMatrix2D(Point2f center, double angle, double scale) private static native long getRotationMatrix2D_0(double center_x, double center_y, double angle, double scale); // C++: Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)) private static native long getStructuringElement_0(int shape, double ksize_width, double ksize_height, double anchor_x, double anchor_y); private static native long getStructuringElement_1(int shape, double ksize_width, double ksize_height); // C++: void goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask = Mat(), int blockSize = 3, bool useHarrisDetector = false, double k = 0.04) private static native void goodFeaturesToTrack_0(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, long mask_nativeObj, int blockSize, boolean useHarrisDetector, double k); private static native void goodFeaturesToTrack_1(long image_nativeObj, long corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance); // C++: void grabCut(Mat img, Mat& mask, Rect rect, Mat& bgdModel, Mat& fgdModel, int iterCount, int mode = GC_EVAL) private static native void grabCut_0(long img_nativeObj, long mask_nativeObj, int rect_x, int rect_y, int rect_width, int rect_height, long bgdModel_nativeObj, long fgdModel_nativeObj, int iterCount, int mode); private static native void grabCut_1(long img_nativeObj, long mask_nativeObj, int rect_x, int rect_y, int rect_width, int rect_height, long bgdModel_nativeObj, long fgdModel_nativeObj, int iterCount); // C++: void initUndistortRectifyMap(Mat cameraMatrix, Mat distCoeffs, Mat R, Mat newCameraMatrix, Size size, int m1type, Mat& map1, Mat& map2) private static native void initUndistortRectifyMap_0(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long R_nativeObj, long newCameraMatrix_nativeObj, double size_width, double size_height, int m1type, long map1_nativeObj, long map2_nativeObj); // C++: float initWideAngleProjMap(Mat cameraMatrix, Mat distCoeffs, Size imageSize, int destImageWidth, int m1type, Mat& map1, Mat& map2, int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0) private static native float initWideAngleProjMap_0(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, double imageSize_width, double imageSize_height, int destImageWidth, int m1type, long map1_nativeObj, long map2_nativeObj, int projType, double alpha); private static native float initWideAngleProjMap_1(long cameraMatrix_nativeObj, long distCoeffs_nativeObj, double imageSize_width, double imageSize_height, int destImageWidth, int m1type, long map1_nativeObj, long map2_nativeObj); // C++: void integral(Mat src, Mat& sum, int sdepth = -1) private static native void integral_0(long src_nativeObj, long sum_nativeObj, int sdepth); private static native void integral_1(long src_nativeObj, long sum_nativeObj); // C++: void integral(Mat src, Mat& sum, Mat& sqsum, int sdepth = -1) private static native void integral2_0(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, int sdepth); private static native void integral2_1(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj); // C++: void integral(Mat src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth = -1) private static native void integral3_0(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, long tilted_nativeObj, int sdepth); private static native void integral3_1(long src_nativeObj, long sum_nativeObj, long sqsum_nativeObj, long tilted_nativeObj); // C++: float intersectConvexConvex(Mat _p1, Mat _p2, Mat& _p12, bool handleNested = true) private static native float intersectConvexConvex_0(long _p1_nativeObj, long _p2_nativeObj, long _p12_nativeObj, boolean handleNested); private static native float intersectConvexConvex_1(long _p1_nativeObj, long _p2_nativeObj, long _p12_nativeObj); // C++: void invertAffineTransform(Mat M, Mat& iM) private static native void invertAffineTransform_0(long M_nativeObj, long iM_nativeObj); // C++: bool isContourConvex(vector_Point contour) private static native boolean isContourConvex_0(long contour_mat_nativeObj); // C++: double matchShapes(Mat contour1, Mat contour2, int method, double parameter) private static native double matchShapes_0(long contour1_nativeObj, long contour2_nativeObj, int method, double parameter); // C++: void matchTemplate(Mat image, Mat templ, Mat& result, int method) private static native void matchTemplate_0(long image_nativeObj, long templ_nativeObj, long result_nativeObj, int method); // C++: void medianBlur(Mat src, Mat& dst, int ksize) private static native void medianBlur_0(long src_nativeObj, long dst_nativeObj, int ksize); // C++: RotatedRect minAreaRect(vector_Point2f points) private static native double[] minAreaRect_0(long points_mat_nativeObj); // C++: void minEnclosingCircle(vector_Point2f points, Point2f& center, float& radius) private static native void minEnclosingCircle_0(long points_mat_nativeObj, double[] center_out, double[] radius_out); // C++: Moments moments(Mat array, bool binaryImage = false) private static native long moments_0(long array_nativeObj, boolean binaryImage); private static native long moments_1(long array_nativeObj); // C++: void morphologyEx(Mat src, Mat& dst, int op, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) private static native void morphologyEx_0(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); private static native void morphologyEx_1(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj, double anchor_x, double anchor_y, int iterations); private static native void morphologyEx_2(long src_nativeObj, long dst_nativeObj, int op, long kernel_nativeObj); // C++: Point2d phaseCorrelate(Mat src1, Mat src2, Mat window = Mat()) private static native double[] phaseCorrelate_0(long src1_nativeObj, long src2_nativeObj, long window_nativeObj); private static native double[] phaseCorrelate_1(long src1_nativeObj, long src2_nativeObj); // C++: Point2d phaseCorrelateRes(Mat src1, Mat src2, Mat window, double* response = 0) private static native double[] phaseCorrelateRes_0(long src1_nativeObj, long src2_nativeObj, long window_nativeObj, double[] response_out); private static native double[] phaseCorrelateRes_1(long src1_nativeObj, long src2_nativeObj, long window_nativeObj); // C++: double pointPolygonTest(vector_Point2f contour, Point2f pt, bool measureDist) private static native double pointPolygonTest_0(long contour_mat_nativeObj, double pt_x, double pt_y, boolean measureDist); // C++: void preCornerDetect(Mat src, Mat& dst, int ksize, int borderType = BORDER_DEFAULT) private static native void preCornerDetect_0(long src_nativeObj, long dst_nativeObj, int ksize, int borderType); private static native void preCornerDetect_1(long src_nativeObj, long dst_nativeObj, int ksize); // C++: void pyrDown(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) private static native void pyrDown_0(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height, int borderType); private static native void pyrDown_1(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height); private static native void pyrDown_2(long src_nativeObj, long dst_nativeObj); // C++: void pyrMeanShiftFiltering(Mat src, Mat& dst, double sp, double sr, int maxLevel = 1, TermCriteria termcrit = TermCriteria( TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)) private static native void pyrMeanShiftFiltering_0(long src_nativeObj, long dst_nativeObj, double sp, double sr, int maxLevel, int termcrit_type, int termcrit_maxCount, double termcrit_epsilon); private static native void pyrMeanShiftFiltering_1(long src_nativeObj, long dst_nativeObj, double sp, double sr); // C++: void pyrUp(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) private static native void pyrUp_0(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height, int borderType); private static native void pyrUp_1(long src_nativeObj, long dst_nativeObj, double dstsize_width, double dstsize_height); private static native void pyrUp_2(long src_nativeObj, long dst_nativeObj); // C++: void remap(Mat src, Mat& dst, Mat map1, Mat map2, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) private static native void remap_0(long src_nativeObj, long dst_nativeObj, long map1_nativeObj, long map2_nativeObj, int interpolation, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); private static native void remap_1(long src_nativeObj, long dst_nativeObj, long map1_nativeObj, long map2_nativeObj, int interpolation); // C++: void resize(Mat src, Mat& dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR) private static native void resize_0(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height, double fx, double fy, int interpolation); private static native void resize_1(long src_nativeObj, long dst_nativeObj, double dsize_width, double dsize_height); // C++: void sepFilter2D(Mat src, Mat& dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) private static native void sepFilter2D_0(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj, double anchor_x, double anchor_y, double delta, int borderType); private static native void sepFilter2D_1(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj, double anchor_x, double anchor_y, double delta); private static native void sepFilter2D_2(long src_nativeObj, long dst_nativeObj, int ddepth, long kernelX_nativeObj, long kernelY_nativeObj); // C++: double threshold(Mat src, Mat& dst, double thresh, double maxval, int type) private static native double threshold_0(long src_nativeObj, long dst_nativeObj, double thresh, double maxval, int type); // C++: void undistort(Mat src, Mat& dst, Mat cameraMatrix, Mat distCoeffs, Mat newCameraMatrix = Mat()) private static native void undistort_0(long src_nativeObj, long dst_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long newCameraMatrix_nativeObj); private static native void undistort_1(long src_nativeObj, long dst_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj); // C++: void undistortPoints(vector_Point2f src, vector_Point2f& dst, Mat cameraMatrix, Mat distCoeffs, Mat R = Mat(), Mat P = Mat()) private static native void undistortPoints_0(long src_mat_nativeObj, long dst_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj, long R_nativeObj, long P_nativeObj); private static native void undistortPoints_1(long src_mat_nativeObj, long dst_mat_nativeObj, long cameraMatrix_nativeObj, long distCoeffs_nativeObj); // C++: void warpAffine(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) private static native void warpAffine_0(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); private static native void warpAffine_1(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags); private static native void warpAffine_2(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height); // C++: void warpPerspective(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) private static native void warpPerspective_0(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); private static native void warpPerspective_1(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height, int flags); private static native void warpPerspective_2(long src_nativeObj, long dst_nativeObj, long M_nativeObj, double dsize_width, double dsize_height); // C++: void watershed(Mat image, Mat& markers) private static native void watershed_0(long image_nativeObj, long markers_nativeObj); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy