commonMain.RegularStar.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of orx-shapes-jvm Show documentation
Show all versions of orx-shapes-jvm Show documentation
project ':orx-shapes'.name
package org.openrndr.extra.shapes
import org.openrndr.math.Vector2
import org.openrndr.math.asRadians
import org.openrndr.shape.ShapeContour
import org.openrndr.shape.contour
import kotlin.math.PI
import kotlin.math.cos
import kotlin.math.sin
fun regularStar(points: Int, innerRadius: Double, outerRadius: Double, center: Vector2 = Vector2.ZERO, phase: Double = 0.0): ShapeContour {
return contour {
val theta = phase.asRadians
val phi = PI * 2.0 / (points * 2)
for (i in 0 until points * 2 step 2) {
val outerPoint = Vector2(cos(i * phi + theta), sin(i * phi + theta)) * outerRadius + center
val innerPoint = Vector2(cos((i + 1) * phi + theta), sin((i + 1) * phi + theta)) * innerRadius + center
moveOrLineTo(outerPoint)
lineTo(innerPoint)
}
close()
}
}
fun regularStarRounded(points: Int, innerRadius: Double, outerRadius: Double,
innerFactor: Double, outerFactor: Double,
center: Vector2 = Vector2.ZERO,
phase: Double = 0.0): ShapeContour {
return contour {
val theta = phase.asRadians
val phi = PI * 2.0 / (points * 2)
for (i in 0 until points * 2 step 2) {
val outerPoint0 = Vector2(cos(i * phi + theta), sin(i * phi + theta)) * outerRadius + center
val innerPoint = Vector2(cos((i + 1) * phi + theta), sin((i + 1) * phi + theta)) * innerRadius + center
val outerPoint1 = Vector2(cos((i + 2) * phi + theta), sin((i + 2) * phi + theta)) * outerRadius + center
val innerPoint1 = Vector2(cos((i + 3) * phi + theta), sin((i + 3) * phi + theta)) * innerRadius + center
val fo = (outerFactor * 0.5)
val fi = (innerFactor * 0.5)
val p0 = innerPoint - (innerPoint - outerPoint0) * fi
val p1 = innerPoint + (outerPoint1 - innerPoint) * fi
val p2 = outerPoint1 - (outerPoint1 - innerPoint) * fo
val p3 = outerPoint1 + (innerPoint1 - outerPoint1) * fo
moveOrLineTo(p0)
curveTo(innerPoint, p1)
lineTo(p2)
curveTo(outerPoint1, p3)
}
close()
}
}
fun regularStarBeveled(points: Int, innerRadius: Double, outerRadius: Double,
innerFactor: Double, outerFactor: Double,
center: Vector2 = Vector2.ZERO,
phase: Double = 0.0): ShapeContour {
return contour {
val theta = phase.asRadians
val phi = PI * 2.0 / (points * 2)
for (i in 0 until points * 2 step 2) {
val outerPoint0 = Vector2(cos(i * phi + theta), sin(i * phi + theta)) * outerRadius + center
val innerPoint = Vector2(cos((i + 1) * phi + theta), sin((i + 1) * phi + theta)) * innerRadius + center
val outerPoint1 = Vector2(cos((i + 2) * phi + theta), sin((i + 2) * phi + theta)) * outerRadius + center
val innerPoint1 = Vector2(cos((i + 3) * phi + theta), sin((i + 3) * phi + theta)) * innerRadius + center
val fo = (outerFactor * 0.5)
val fi = (innerFactor * 0.5)
val p0 = innerPoint - (innerPoint - outerPoint0) * fi
val p1 = innerPoint + (outerPoint1 - innerPoint) * fi
val p2 = outerPoint1 - (outerPoint1 - innerPoint) * fo
val p3 = outerPoint1 + (innerPoint1 - outerPoint1) * fo
moveOrLineTo(p0)
lineTo(p1)
lineTo(p2)
lineTo(p3)
}
close()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy