commonMain.alphashape.AlphaShape.kt Maven / Gradle / Ivy
The newest version!
package org.openrndr.extra.shapes.alphashape
import org.openrndr.extra.triangulation.Delaunay
import org.openrndr.math.Vector2
import org.openrndr.shape.*
import kotlin.math.max
import kotlin.math.min
import kotlin.math.pow
import kotlin.math.sqrt
/**
* Create an alpha shape from list of [Vector2]
*/
fun List.alphaShape(): Shape {
return AlphaShape(this).createShape()
}
private fun circumradius(p1: Vector2, p2: Vector2, p3: Vector2): Double {
val a = (p2 - p1).length
val b = (p3 - p2).length
val c = (p1 - p3).length
return (a * b * c) / sqrt((a + b + c) * (b + c - a) * (c + a - b) * (a + b - c))
}
/**
* Class for creating alpha shapes.
* See the [createContour] and [createShape] methods to create an alpha shape.
* @param points The points for which an alpha shape is calculated.
*/
class AlphaShape(val points: List) {
val delaunay = Delaunay.from(points)
private fun Pair.flip() = Pair(second, first)
private fun createBase(alpha: Double): List> {
if (delaunay.points.size < 9) return emptyList()
val triangles = delaunay.triangles
var allEdges = mutableSetOf>()
var perimeterEdges = mutableSetOf>()
for (i in triangles.indices step 3) {
val t0 = triangles[i] * 2
val t1 = triangles[i + 1] * 2
val t2 = triangles[i + 2] * 2
val p1 = getVec(t0)
val p2 = getVec(t1)
val p3 = getVec(t2)
val r = circumradius(p1, p2, p3)
if (r < alpha) {
val edges = listOf(Pair(t0, t1), Pair(t1, t2), Pair(t2, t0))
for (edge in edges) {
val fEdge = edge.flip()
if (edge !in allEdges && fEdge !in allEdges) {
allEdges.add(edge)
perimeterEdges.add(edge)
} else {
perimeterEdges.remove(edge)
perimeterEdges.remove(fEdge)
}
}
}
}
return perimeterEdges.toList()
}
/**
* Creates an alpha shape without holes
* @param alpha The alpha parameter from the mathematical definition of an alpha shape.
* If alpha is 0.0 the alpha shape consists only of the set of input points, yielding [ShapeContour.EMPTY].
* As alpha goes to infinity, the alpha shape becomes equal to the convex hull of the input points.
* @return A closed [ShapeContour] representing the alpha shape, or [ShapeContour.EMPTY] if the alpha shape
* cannot be represented by a closed [ShapeContour] (e.g. because it consists of multiple disconnected components).
*/
fun createContour(alpha: Double): ShapeContour = edgesToShapeContour(createBase(alpha))
/**
* Returns a closed [ShapeContour] representing an alpha shape without holes; the smallest alpha is chosen such that
* the corresponding alpha shape contains all input points and can be represented by a closed [ShapeContour].
*/
fun createContour(): ShapeContour = createContour(determineContourAlpha())
/**
* Creates an alpha shape, possibly with holes
* @param alpha The alpha parameter from the mathematical definition of an alpha shape.
* If alpha is 0.0 the alpha shape consists only of the set of input points, yielding [Shape.EMPTY].
* As alpha goes to infinity, the alpha shape becomes equal to the convex hull of the input points.
* @return A [Shape] representing the alpha shape, or [Shape.EMPTY] if the alpha shape
* cannot be represented by a [Shape] (e.g. because it consists of multiple disconnected components).
*/
fun createShape(alpha: Double): Shape = edgesToShape(createBase(alpha))
/**
* Returns a [Shape] representing an alpha shape; the smallest alpha is chosen such that the corresponding alpha
* shape contains all input points and can be represented by a [Shape] (in particular, it consists of one component).
*/
fun createShape(): Shape = edgesToShape(createBase(determineShapeAlpha()))
/**
* Creates an alpha shape
* @param alpha The alpha parameter from the mathematical definition of an alpha shape.
* If alpha is 0.0 the alpha shape consists only of the set of input points, yielding [ShapeContour.EMPTY].
* As alpha goes to infinity, the alpha shape becomes equal to the convex hull of the input points.
* @return A list of [LineSegment]s representing the perimeter of the alpha shape.
*/
fun createSegments(alpha: Double): List =
createBase(alpha).map { LineSegment(getVec(it.first), getVec(it.second)) }
private fun getVec(i: Int) = Vector2(delaunay.points[i], delaunay.points[i + 1])
private fun edgesToShapeContour(edges: List>): ShapeContour {
if (edges.isEmpty()) return ShapeContour.EMPTY
val mapping = edges.toMap()
val segments = mutableListOf()
val start = edges.first().first
var current = start
val left = edges.map { it.first }.toMutableSet()
for (i in edges.indices) {
val next = mapping[current]!!
segments.add(Segment2D(getVec(current), getVec(next)))
left.remove(current)
current = next
if (current == start) break
}
return if (current == start && left.isEmpty()) {
ShapeContour(segments, closed = true).clockwise
} else {
ShapeContour.EMPTY
}
}
private fun edgesToShape(edges: List>): Shape {
if (edges.isEmpty()) return Shape.EMPTY
val mapping = edges.toMap()
val contours = mutableListOf()
val contoursPoints = mutableListOf>()
val left = edges.map { it.first }.toMutableSet()
// Find closed loops and save them as contours
while (left.isNotEmpty()) {
val start = left.first()
var current = start
val segments = mutableListOf()
val contourPoints = mutableListOf()
for (i in edges.indices) {
val next = mapping[current]!!
segments.add(Segment2D(getVec(current), getVec(next)))
contourPoints.add(getVec(current))
left.remove(current)
current = next
if (current == start) break
}
contourPoints.add(getVec(current))
contoursPoints.add(contourPoints)
if (current == start) contours.add(ShapeContour(segments, closed = true))
}
// Find contour that encloses all other contours, if it exists
var enclosingContour = -1
for (i in contours.indices) {
var encloses = true
for (j in contours.indices) {
if (i == j) continue
if (contoursPoints[j].any { it !in contours[i] }) {
encloses = false
}
}
if (encloses) {
enclosingContour = i
break
}
}
// If an enclosing contour exists, make a shape with it being clockwise and the other contours counterclockwise
return if (enclosingContour < 0) {
Shape.EMPTY
} else {
val orientedContours = mutableListOf()
orientedContours.add(contours[enclosingContour].clockwise)
for (i in contours.indices) {
if (i != enclosingContour) orientedContours.add(contours[i].counterClockwise)
}
Shape(orientedContours)
}
}
/**
* Performs binary search to find the smallest alpha such that all points are inside the alpha shape.
*/
private fun determineAlphaBase(decision: (Double) -> Boolean): Double {
// Compute bounding box to find an upper bound for the binary search
var minX = Double.POSITIVE_INFINITY
var minY = Double.POSITIVE_INFINITY
var maxX = Double.NEGATIVE_INFINITY
var maxY = Double.NEGATIVE_INFINITY
for (i in delaunay.points.indices step 2) {
val x = delaunay.points[i]
val y = delaunay.points[i + 1]
minX = min(minX, x)
maxX = max(maxX, x)
minY = min(minY, y)
maxY = max(maxY, y)
}
// Perform binary search
var lower = 0.0
var upper = (maxX - minX).pow(2) + (maxY - minY).pow(2)
val precision = 0.001
while (lower < upper - precision) {
val mid = (lower + upper) / 2
if (decision(mid)) upper = mid else lower = mid
}
return upper
}
fun determineContourAlpha(): Double = determineAlphaBase { mid -> points.all { it in createContour(mid) } }
fun determineShapeAlpha(): Double = determineAlphaBase { mid -> points.all { it in createShape(mid) } }
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy