commonMain.arrangement.Arrangement.kt Maven / Gradle / Ivy
The newest version!
package org.openrndr.extra.shapes.arrangement
import org.openrndr.extra.kdtree.buildKDTree
import org.openrndr.extra.kdtree.vector2Mapper
import org.openrndr.math.Vector2
import org.openrndr.math.YPolarity
import org.openrndr.shape.*
import kotlin.math.PI
import kotlin.math.abs
import kotlin.math.atan2
import kotlin.math.min
// === Helpers ===
private val ShapeContour.start get() = segments.first().start
private val ShapeContour.startContourPoint get() =
ContourPoint(
this,
0.0,
segments.first(),
0.0,
segments.first().start,
)
private val ShapeContour.end get() = segments.last().end
private val ShapeContour.endContourPoint get() =
ContourPoint(
this,
1.0,
segments.last(),
1.0,
segments.last().start,
)
private fun ShapeContour.direction(ut: Double): Vector2 = normal(ut).perpendicular(polarity.opposite)
private val YPolarity.opposite get() =
when(this) {
YPolarity.CCW_POSITIVE_Y -> YPolarity.CW_NEGATIVE_Y
YPolarity.CW_NEGATIVE_Y -> YPolarity.CCW_POSITIVE_Y
}
private fun angleBetween(v: Vector2, w: Vector2) = atan2(w.y*v.x - w.x*v.y, w.x*v.x + w.y*v.y)
private fun MutableMap>.add(key: K, value: V) {
val ml = get(key)
if (ml != null)
ml.add(value)
else set(key, mutableListOf(value))
}
private fun MutableMap>.addAll(key: K, values: Collection) {
val ml = get(key)
if (ml != null)
ml.addAll(values)
else set(key, values.toMutableList())
}
/**
* Vertex of an arrangement, which represents an intersection (X) between two shapes.
*/
data class XVertex(val pos: Vector2) {
/** The half-edges leaving this vertex */
val outgoing = mutableListOf()
/** The half-edges entering this vertex */
val incoming = mutableListOf()
}
/**
* Edge of an arrangement.
* @property contour Geometric representation of the edge, for drawing purposes.
* @property origin The shape that the edge originates from.
*/
data class XEdge(val source: XVertex, val target: XVertex, val contour: ShapeContour, val origin: ShapeProvider) {
val start get() = contour.start
val end get() = contour.end
/** The two half-edges that correspond to this edge. */
lateinit var halfEdges: Pair
init {
// Once an edge is created, also create half-edges and do the necessary bookkeeping.
splitAndAdd()
}
private fun split(): Pair {
val hes = XHalfEdge(source, target, contour, this) to XHalfEdge(target, source, contour.reversed, this)
hes.first.twin = hes.second
hes.second.twin = hes.first
halfEdges = hes
return hes
}
private fun splitAndAdd(): Pair {
val (a, b) = split()
source.outgoing.add(a)
target.outgoing.add(b)
source.incoming.add(b)
target.incoming.add(a)
return halfEdges
}
}
/**
* Half-edge of an arrangement.
* Each edge is split length-wise into two half-edges of opposite orientation.
* Half-edges can be used to traverse an arrangement.
* @property contour Geometric representation of the edge, for drawing purposes.
* @property original The edge that was split into this half-edge and its [twin].
*/
data class XHalfEdge(val source: XVertex, val target: XVertex, val contour: ShapeContour, val original: XEdge) {
val start get() = contour.start
val end get() = contour.end
/** The shape that the half-edge originates from. */
val origin get() = original.origin
/** The half-edge of opposite direction originating from [original].
* This is useful for traversing to a different face. */
lateinit var twin: XHalfEdge
/** The face to the right of this half-edge. */
lateinit var face: XFace
/** The next half-edge of the [face]. */
val next by lazy {
if (target.outgoing.size == 2 && this in target.outgoing) return@lazy this
val y = target.pos
val x = y - contour.direction(1.0)
val candidates = target.outgoing.filterNot { it == twin }
.map {
val z = y + it.contour.direction(0.0)
it to angleBetween(z - y, x - y)
}.filter { it.second > -1E-6 || it.second < -PI + 1E-6 }
if (candidates.size == 1) {
candidates[0].first
} else if (candidates.isEmpty()) {
twin
} else {
val cand = candidates.minBy { abs(it.second) }
if (cand.second > 1E-6 && candidates.all { it == cand || abs(it.second) - 1E-6 > abs(cand.second) }) return@lazy cand.first
val maxR = min(candidates.minOf { it.first.end.distanceTo(target.pos) }, start.distanceTo(target.pos))
val c = Circle(target.pos, maxR / 2.0)
// if more than one intersection with c then we make a guess
val x_ = c.contour.intersections(contour)[0]
val newCandidates = candidates.map { (e, _) ->
val inters = e.contour.intersections(c.contour)
// if (inters.size != 1) then we make a guess
e to angleBetween(inters[0].position - y, x_.position - y)
}
newCandidates.filter { it.second > -1E-6 || it.second < -PI + 1E-6 }.minBy { abs(it.second) }.first
}
}
}
/**
* Face of an arrangement.
* @property edge An arbitrary half-edge incident to this face.
* @property origins The shapes of which this face is a subset.
*/
open class XFace(val edge: XHalfEdge, val origins: List)
/**
* A bounded face of an arrangement.
* @property edge An arbitrary half-edge incident to this face.
* @property origins The shapes of which this face is a subset.
* @property contour The geometric representation of this face.
*/
class BoundedFace(edge: XHalfEdge, origins: List, val contour: ShapeContour): XFace(edge, origins)
/**
* Create an arrangement of a list of [ShapeProvider] objects, like [Shape]s or [ShapeContour]s.
* @property maxIters The maximum number of edges incident to a face, used to detect infinite loops so that an error is thrown instead.
*/
data class Arrangement(val shapes: List, val maxIters: Int = 1000) {
constructor(vararg shapes: ShapeProvider): this(shapes.toList())
/** Maps a contour to the vertices incident to it. */
val cVertsMap = mutableMapOf>>()
/** Maps a shape to the edges incident to it. */
val hEdgesMap = mutableMapOf>()
/** Maps a shape to the faces that it is a superset of. */
val hFacesMap = mutableMapOf>()
/** All vertices of the arrangement. */
val vertices by lazy { cVertsMap.flatMap { it.value.map { it.first } }.toSet().toList() }
/** All edges of the arrangement. */
val edges by lazy { hEdgesMap.flatMap { it.value } }
/** All half-edges of the arrangement. */
val halfEdges by lazy {
edges.flatMap {
it.halfEdges.toList()
}
}
/** All faces of the arrangement. */
val faces = mutableListOf()
val boundedFaces by lazy { faces.filterIsInstance() }
val unboundedFaces by lazy { faces.filter{ it !is BoundedFace } }
/** The faces that are a subset of some input shape. */
val originFaces by lazy { boundedFaces.filter { it.origins.isNotEmpty() } }
/** The bounded faces that are not a subset of any input shape. */
val holes by lazy { boundedFaces.filter { it.origins.isEmpty() } }
/** The outer boundary contours of each connected component. */
val boundaries: List by lazy {
unboundedFaces.map { f ->
val start = f.edge
var current = start.next
var contour = start.contour
while (current != start) {
contour += current.contour
current = current.next
}
contour
}
}
/** A list containing an arbitrary half-edge for each connected component. */
val components by lazy {
unboundedFaces.map { it.edge }
}
init {
createVertices()
createEdges()
createFaces()
}
private fun createVertices() {
data class CandidateVertex(val position: Vector2, val contourPoints: List)
val candidates = buildList {
// For open contours, add the start and end points as (candidate) vertices.
for (s in shapes) {
for (c in s.shape.contours) {
if (!c.closed) {
add(CandidateVertex(c.start, listOf(c.startContourPoint)))
add(CandidateVertex(c.end, listOf(c.endContourPoint)))
}
}
}
// Compute pairwise intersections between contours.
for (i in shapes.indices) {
val s1 = shapes[i]
for (j in i + 1 until shapes.size) {
val s2 = shapes[j]
val inters = s1.shape.contours.flatMap {
c1 -> s2.shape.contours.flatMap { c2 ->
c1.intersections(c2)
}
}
for (inter in inters) {
add(CandidateVertex(inter.position, listOf(inter.a, inter.b)))
}
}
}
}
// We will merge vertices that lie close together. For this compute a kd-tree of all candidate vertices.
val tree = buildKDTree(candidates.toMutableList(), 2) { v, d ->
vector2Mapper(v.position, d)
}
val unvisited = candidates.toMutableSet()
val new = mutableListOf()
while (unvisited.isNotEmpty()) {
val inter = unvisited.first()
val inters = tree.findAllInRadius(inter, 1E-1, includeQuery = true).filter { it in unvisited }
unvisited.removeAll(inters)
if (inters.size == 1) {
val v = XVertex(inters[0].position)
new.add(v)
for (cp in inters[0].contourPoints)
cVertsMap.add(cp.contour, v to cp.contourT)
} else if (inters.size > 1) {
val center = inters.fold(Vector2.ZERO) { acc, x -> acc + x.position } / inters.size.toDouble()
val v = XVertex(center)
val cps = mutableSetOf()
for (cp in inters.flatMap { it.contourPoints }) {
if (cps.any { it.contour == cp.contour && abs(it.contourT - cp.contourT) < 1E-2 }) continue
cps.add(cp)
}
for (cp in cps) {
cVertsMap.add(cp.contour, v to cp.contourT)
}
new.add(v)
} else {
error("Impossible")
}
}
}
private fun createEdges() {
for (s in shapes) {
// If a shape is passed in twice to compute self-intersections skip edge construction for the second one.
if (s in hEdgesMap.keys) continue
for (c in s.shape.contours) {
// Determine whether a contour is closed and not intersected by anything.
// There are no vertices on such a contour. We add a dummy one; it is not added to the vertices list.
if (cVertsMap[c]?.isEmpty() != false) {
val dummy = XVertex(c.start)
val e = XEdge(dummy, dummy, c, s)
hEdgesMap.add(s, e)
continue
}
// Create edges between consecutive vertices of this contour.
val tValues = cVertsMap[c]!!.sortedBy { it.second }
val middleEdges = tValues.zipWithNext { (v1, t1), (v2, t2) ->
val piece = c.sub(t1, t2)
if (piece.empty) {
null
} else {
val e = XEdge(v1, v2, piece, s)
e
}
}.filterNotNull()
hEdgesMap.addAll(s, middleEdges)
// If the contour is closed, make the last edge connecting the ends.
if (c.closed) {
val (lastV, lastT) = tValues.last()
val (firstV, firstT) = tValues.first()
val lastPiece = c.sub(lastT, 1.0) + c.sub(0.0, firstT)
if (!lastPiece.empty) {
val lastEdge = XEdge(lastV, firstV, lastPiece, s)
hEdgesMap.add(s, lastEdge)
}
}
}
}
}
private fun createFaces() {
val remainingHalfEdges = halfEdges.toMutableList()
while(remainingHalfEdges.isNotEmpty()) {
// Pick an arbitrary half-edge that has not been handled yet
val heStart = remainingHalfEdges.first()
val visited = mutableListOf(heStart)
var current = heStart
var faceContour = heStart.contour
// Repeatedly go to the next half-edge, until we arrive back where we started.
var iters = 0
while (current.next != heStart && iters < maxIters) {
current = current.next
visited.add(current)
faceContour += current.contour
iters++
}
if (iters >= maxIters) {
error("Arrangement: A face seems to consist of more than maxIters ($maxIters) edges. This is likely " +
"a robustness issue arising from using input shapes that would result in small or thin faces.")
}
remainingHalfEdges.removeAll(visited)
val facePt = heStart.contour.position(0.5) + heStart.contour.normal(0.5) * -0.01
val origins = shapes.filter { s -> s.shape.closedContours.isNotEmpty() && facePt in s.shape }
val closed = if (faceContour.closed) faceContour else faceContour.close()
val f = if (closed.winding == Winding.CLOCKWISE) BoundedFace(heStart, origins, closed)
else XFace(heStart, emptyList())
faces.add(f)
for (s in origins) {
hFacesMap.add(s, f)
}
visited.forEach { e ->
e.face = f
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy