commonMain.Curve2.kt Maven / Gradle / Ivy
package org.openrndr.kartifex
import org.openrndr.kartifex.utils.Intersections
interface Curve2 {
/**
* @param t a parametric point on the curve, not necessarily within [0, 1]
* @return the interpolated position on the curve
*/
fun position(t: Double): Vec2
/**
* Given a ring of curves, the sum of area() will be the are enclosed by that ring. For clockwise rings, the sum will
* be negative, for counter-clockwise rings it will be positive.
*
* @return the signed area of the curve
*/
fun signedArea(): Double
fun length(): Double
fun start() = position(0.0)
fun end() = position(1.0)
/**
* @return an updated curve with the specified endpoints.
*/
fun endpoints(start: Vec2, end: Vec2): Curve2
/**
* @param t a parametric point on the curve, not necessarily within [0, 1]
* @return the tangent at the interpolated position on the curve, which is not normalized
*/
fun direction(t: Double): Vec2
/**
* @param t a parametric point within the curve, which must be within (0, 1)
* @return an array representing the lower and upper regions of the curve, split at `t`
*/
fun split(t: Double): Array
fun isFlat(epsilon: Double): Boolean
/**
* @param interval the parametric range
* @return the curve within [interval.lo, interval.hi]
*/
fun range(interval: Interval) = range(interval.lo, interval.hi)
/**
* @param tMin the lower parametric bound
* @param tMax the upper parametric bound
* @return the curve within [tMin, tMax]
*/
fun range(tMin: Double, tMax: Double): Curve2 {
require(tMin != tMax) { "range must be non-zero" }
require(tMax >= tMin) { "tMin must be less than tMax" }
return when {
tMin == 0.0 && tMax == 1.0 -> this
tMin == 0.0 -> split(tMax)[0]
tMax == 1.0 -> split(tMin)[1]
else -> split(tMin)[1].split((tMax - tMin) / (1 - tMin))[0].endpoints(position(tMin), position(tMax))
}
}
/**
* @param unsafeTs an array of parametric split points
* @return an array of curves, split at the specified points.
*/
fun split(unsafeTs: DoubleArray): Array {
var previous = Double.POSITIVE_INFINITY
var tCount = 0
for (i in unsafeTs.indices) {
if (unsafeTs[i] != previous) {
tCount++
}
previous = unsafeTs[i]
}
var ts = DoubleArray(tCount)
tCount = 0
previous = Double.POSITIVE_INFINITY
for (i in unsafeTs.indices) {
if (unsafeTs[i] != previous) {
ts[tCount] = unsafeTs[i]
tCount++
}
previous = unsafeTs[i]
}
if (ts.isEmpty()) {
return arrayOf(this)
}
//ts = ts.clone()
//java.util.Arrays.sort(ts)
ts = ts.map { it }.toDoubleArray()
ts.sort()
val offset = if (ts[0] == 0.0) 1 else 0
val len = ts.size - offset - if (ts[ts.size - 1] == 1.0) 1 else 0
ts.copyInto(ts, 0, offset, offset+len)
if (len == 0) {
return arrayOf(this)
} else if (len == 1) {
return split(ts[0])
}
val result = arrayOfNulls(len + 1)
result[0] = range(0.0, ts[0])
for (i in 0 until len - 1) {
result[i + 1] = range(ts[i], ts[i + 1])
}
result[len] = range(ts[len - 1], 1.0)
return result.filterNotNull().toTypedArray()
}
/**
* @param p a point in 2D space
* @return the `t` parameter representing the closest point on the curve, not necessarily within [0,1]
*/
fun nearestPoint(p: Vec2): Double
fun bounds(): Box2 {
var bounds: Box2 = Box.box(start(), end())
for (t in inflections()) {
bounds = bounds.union(position(t))
}
return bounds
}
fun subdivide(error: Double): Array
fun transform(m: Matrix3): Curve2
fun reverse(): Curve2
fun inflections(): DoubleArray
fun intersections(c: Curve2) = Intersections.intersections(this, c)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy