All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openscience.cdk.geometry.CrystalGeometryTools Maven / Gradle / Ivy

There is a newer version: 2.9
Show newest version
/* Copyright (C) 2002-2007  The Chemistry Development Kit (CDK) project
 *
 * Contact: [email protected]
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 * All we ask is that proper credit is given for our work, which includes
 * - but is not limited to - adding the above copyright notice to the beginning
 * of your source code files, and to any copyright notice that you may distribute
 * with programs based on this work.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *  */
package org.openscience.cdk.geometry;

import java.util.Iterator;

import org.openscience.cdk.interfaces.IAtom;
import org.openscience.cdk.interfaces.IAtomContainer;
import org.openscience.cdk.interfaces.ICrystal;

import javax.vecmath.Point3d;
import javax.vecmath.Vector3d;

/**
 * A set of static methods for working with crystal coordinates.
 *
 * @cdk.module standard
 * @cdk.githash
 *
 * @author Egon Willighagen <[email protected]>
 *
 * @cdk.keyword fractional coordinates, crystal
 */
public class CrystalGeometryTools {

    /**
     * Inverts three cell axes.
     *
     * @return         a 3x3 matrix with the three Cartesian vectors representing
     *                 the unit cell axes. The a axis is the first row.
     */
    public static Vector3d[] calcInvertedAxes(Vector3d aAxis, Vector3d bAxis, Vector3d cAxis) {
        double det = aAxis.x * bAxis.y * cAxis.z - aAxis.x * bAxis.z * cAxis.y - aAxis.y * bAxis.x * cAxis.z + aAxis.y
                * bAxis.z * cAxis.x + aAxis.z * bAxis.x * cAxis.y - aAxis.z * bAxis.y * cAxis.x;
        Vector3d[] invaxes = new Vector3d[3];
        invaxes[0] = new Vector3d();
        invaxes[0].x = (bAxis.y * cAxis.z - bAxis.z * cAxis.y) / det;
        invaxes[0].y = (bAxis.z * cAxis.x - bAxis.x * cAxis.z) / det;
        invaxes[0].z = (bAxis.x * cAxis.y - bAxis.y * cAxis.x) / det;

        invaxes[1] = new Vector3d();
        invaxes[1].x = (aAxis.z * cAxis.y - aAxis.y * cAxis.z) / det;
        invaxes[1].y = (aAxis.x * cAxis.z - aAxis.z * cAxis.x) / det;
        invaxes[1].z = (aAxis.y * cAxis.x - aAxis.x * cAxis.y) / det;

        invaxes[2] = new Vector3d();
        invaxes[2].x = (aAxis.y * bAxis.z - aAxis.z * bAxis.y) / det;
        invaxes[2].y = (aAxis.z * bAxis.x - aAxis.x * bAxis.z) / det;
        invaxes[2].z = (aAxis.x * bAxis.y - aAxis.y * bAxis.x) / det;
        return invaxes;
    }

    /**
     * @cdk.dictref blue-obelisk:convertCartesianIntoFractionalCoordinates
     */
    public static Point3d cartesianToFractional(Vector3d aAxis, Vector3d bAxis, Vector3d cAxis, Point3d cartPoint) {
        Vector3d[] invaxis = calcInvertedAxes(aAxis, bAxis, cAxis);
        Point3d frac = new Point3d();
        frac.x = invaxis[0].x * cartPoint.x + invaxis[0].y * cartPoint.y + invaxis[0].z * cartPoint.z;
        frac.y = invaxis[1].x * cartPoint.x + invaxis[1].y * cartPoint.y + invaxis[1].z * cartPoint.z;
        frac.z = invaxis[2].x * cartPoint.x + invaxis[2].y * cartPoint.y + invaxis[2].z * cartPoint.z;
        return frac;
    }

    /**
     * @cdk.dictref blue-obelisk:convertFractionIntoCartesianCoordinates
     */
    public static Point3d fractionalToCartesian(Vector3d aAxis, Vector3d bAxis, Vector3d cAxis, Point3d frac) {
        Point3d cart = new Point3d();
        cart.x = frac.x * aAxis.x + frac.y * bAxis.x + frac.z * cAxis.x;
        cart.y = frac.x * aAxis.y + frac.y * bAxis.y + frac.z * cAxis.y;
        cart.z = frac.x * aAxis.z + frac.y * bAxis.z + frac.z * cAxis.z;
        return cart;
    }

    /**
     * Calculates Cartesian vectors for unit cell axes from axes lengths and angles
     * between axes.
     *
     * 

To calculate Cartesian coordinates, it places the a axis on the x axes, * the b axis in the xy plane, making an angle gamma with the a axis, and places * the c axis to fulfill the remaining constraints. (See also * the * CCL archive.) * * @param alength length of the a axis * @param blength length of the b axis * @param clength length of the c axis * @param alpha angle between b and c axes in degrees * @param beta angle between a and c axes in degrees * @param gamma angle between a and b axes in degrees * @return an array of Vector3d objects with the three Cartesian vectors representing * the unit cell axes. * * @cdk.keyword notional coordinates * @cdk.dictref blue-obelisk:convertNotionalIntoCartesianCoordinates */ public static Vector3d[] notionalToCartesian(double alength, double blength, double clength, double alpha, double beta, double gamma) { Vector3d[] axes = new Vector3d[3]; /* 1. align the a axis with x axis */ axes[0] = new Vector3d(); axes[0].x = alength; axes[0].y = 0.0; axes[0].z = 0.0; double toRadians = Math.PI / 180.0; /* some intermediate variables */ double cosalpha = Math.cos(toRadians * alpha); double cosbeta = Math.cos(toRadians * beta); double cosgamma = Math.cos(toRadians * gamma); double singamma = Math.sin(toRadians * gamma); /* 2. place the b is in xy plane making a angle gamma with a */ axes[1] = new Vector3d(); axes[1].x = blength * cosgamma; axes[1].y = blength * singamma; axes[1].z = 0.0; /* 3. now the c axis, with more complex maths */ axes[2] = new Vector3d(); double volume = alength * blength * clength * Math.sqrt(1.0 - cosalpha * cosalpha - cosbeta * cosbeta - cosgamma * cosgamma + 2.0 * cosalpha * cosbeta * cosgamma); axes[2].x = clength * cosbeta; axes[2].y = clength * (cosalpha - cosbeta * cosgamma) / singamma; axes[2].z = volume / (alength * blength * singamma); return axes; } /** * @cdk.dictref blue-obelisk:convertCartesianIntoNotionalCoordinates */ public static double[] cartesianToNotional(Vector3d aAxis, Vector3d bAxis, Vector3d cAxis) { double[] notionalCoords = new double[6]; notionalCoords[0] = aAxis.length(); notionalCoords[1] = bAxis.length(); notionalCoords[2] = cAxis.length(); notionalCoords[3] = bAxis.angle(cAxis) * 180.0 / Math.PI; notionalCoords[4] = aAxis.angle(cAxis) * 180.0 / Math.PI; notionalCoords[5] = aAxis.angle(bAxis) * 180.0 / Math.PI; return notionalCoords; } /** * Determines if this model contains fractional (crystal) coordinates. * * @return boolean indication that 3D coordinates are available */ public static boolean hasCrystalCoordinates(IAtomContainer container) { Iterator atoms = container.atoms().iterator(); while (atoms.hasNext()) { if (atoms.next().getFractionalPoint3d() == null) { return false; } } return true; } /** * Creates Cartesian coordinates for all Atoms in the Crystal. */ public static void fractionalToCartesian(ICrystal crystal) { Iterator atoms = crystal.atoms().iterator(); Vector3d aAxis = crystal.getA(); Vector3d bAxis = crystal.getB(); Vector3d cAxis = crystal.getC(); while (atoms.hasNext()) { IAtom atom = atoms.next(); Point3d fracPoint = atom.getFractionalPoint3d(); if (fracPoint != null) { atom.setPoint3d(fractionalToCartesian(aAxis, bAxis, cAxis, fracPoint)); } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy