Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.opensearch.ml.common.input.MLInput Maven / Gradle / Ivy
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/
package org.opensearch.ml.common.input;
import static org.opensearch.core.xcontent.XContentParserUtils.ensureExpectedToken;
import static org.opensearch.ml.common.input.remote.RemoteInferenceMLInput.ACTION_TYPE_FIELD;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import org.opensearch.core.common.io.stream.StreamInput;
import org.opensearch.core.common.io.stream.StreamOutput;
import org.opensearch.core.xcontent.XContentBuilder;
import org.opensearch.core.xcontent.XContentParser;
import org.opensearch.ml.common.FunctionName;
import org.opensearch.ml.common.MLCommonsClassLoader;
import org.opensearch.ml.common.connector.ConnectorAction.ActionType;
import org.opensearch.ml.common.dataframe.DataFrame;
import org.opensearch.ml.common.dataframe.DefaultDataFrame;
import org.opensearch.ml.common.dataset.DataFrameInputDataset;
import org.opensearch.ml.common.dataset.MLInputDataset;
import org.opensearch.ml.common.dataset.QuestionAnsweringInputDataSet;
import org.opensearch.ml.common.dataset.SearchQueryInputDataset;
import org.opensearch.ml.common.dataset.TextDocsInputDataSet;
import org.opensearch.ml.common.dataset.TextSimilarityInputDataSet;
import org.opensearch.ml.common.dataset.remote.RemoteInferenceInputDataSet;
import org.opensearch.ml.common.input.parameter.MLAlgoParams;
import org.opensearch.ml.common.output.model.ModelResultFilter;
import org.opensearch.search.builder.SearchSourceBuilder;
import lombok.Builder;
import lombok.Data;
import lombok.NoArgsConstructor;
/**
* ML input data: algorithm name, parameters and input data set.
*/
@Data
@NoArgsConstructor
public class MLInput implements Input {
public static final String ALGORITHM_FIELD = "algorithm";
public static final String ML_PARAMETERS_FIELD = "parameters";
public static final String INPUT_INDEX_FIELD = "input_index";
public static final String INPUT_QUERY_FIELD = "input_query";
public static final String INPUT_DATA_FIELD = "input_data";
// For trained model
// Return bytes in model output
public static final String RETURN_BYTES_FIELD = "return_bytes";
// Return bytes in model output. This can be used together with return_bytes.
public static final String RETURN_NUMBER_FIELD = "return_number";
// Filter target response with name in model output
public static final String TARGET_RESPONSE_FIELD = "target_response";
// Filter target response with position in model output
public static final String TARGET_RESPONSE_POSITIONS_FIELD = "target_response_positions";
// Input text sentences for text embedding model
public static final String TEXT_DOCS_FIELD = "text_docs";
// Input query text to compare against for text similarity model
public static final String QUERY_TEXT_FIELD = "query_text";
public static final String PARAMETERS_FIELD = "parameters";
// Input question in question answering model
public static final String QUESTION_FIELD = "question";
// Input context in question answering model
public static final String CONTEXT_FIELD = "context";
// Algorithm name
protected FunctionName algorithm;
// ML algorithm parameters
protected MLAlgoParams parameters;
// Input data to train model, run trained model to predict or run ML algorithms(no-model-based) directly.
protected MLInputDataset inputDataset;
private int version = 1;
@Builder(toBuilder = true)
public MLInput(FunctionName algorithm, MLAlgoParams parameters, MLInputDataset inputDataset) {
validate(algorithm);
this.algorithm = algorithm;
this.parameters = parameters;
this.inputDataset = inputDataset;
}
public MLInput(
FunctionName algorithm,
MLAlgoParams parameters,
SearchSourceBuilder searchSourceBuilder,
List sourceIndices,
DataFrame dataFrame,
MLInputDataset inputDataset
) {
validate(algorithm);
this.algorithm = algorithm;
this.parameters = parameters;
if (inputDataset != null) {
this.inputDataset = inputDataset;
} else {
this.inputDataset = createInputDataSet(searchSourceBuilder, sourceIndices, dataFrame);
}
}
private void validate(FunctionName algorithm) {
if (algorithm == null) {
throw new IllegalArgumentException("algorithm can't be null");
}
}
public MLInput(StreamInput in) throws IOException {
this.algorithm = in.readEnum(FunctionName.class);
if (in.readBoolean()) {
this.parameters = MLCommonsClassLoader.initMLInstance(algorithm, in, StreamInput.class);
}
if (in.readBoolean()) {
this.inputDataset = MLInputDataset.fromStream(in);
}
this.version = in.readInt();
}
@Override
public void writeTo(StreamOutput out) throws IOException {
out.writeEnum(algorithm);
if (parameters != null) {
out.writeBoolean(true);
parameters.writeTo(out);
} else {
out.writeBoolean(false);
}
if (inputDataset != null) {
out.writeBoolean(true);
inputDataset.writeTo(out);
} else {
out.writeBoolean(false);
}
out.writeInt(version);
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
builder.field(ALGORITHM_FIELD, algorithm.name());
if (parameters != null) {
builder.field(ML_PARAMETERS_FIELD, parameters);
}
if (inputDataset != null) {
switch (inputDataset.getInputDataType()) {
case SEARCH_QUERY:
builder.field(INPUT_INDEX_FIELD, ((SearchQueryInputDataset) inputDataset).getIndices().toArray(new String[0]));
builder.field(INPUT_QUERY_FIELD, ((SearchQueryInputDataset) inputDataset).getSearchSourceBuilder());
break;
case DATA_FRAME:
builder.startObject(INPUT_DATA_FIELD);
((DataFrameInputDataset) inputDataset).getDataFrame().toXContent(builder, EMPTY_PARAMS);
builder.endObject();
break;
case TEXT_DOCS:
TextDocsInputDataSet textInputDataSet = (TextDocsInputDataSet) this.inputDataset;
List docs = textInputDataSet.getDocs();
ModelResultFilter resultFilter = textInputDataSet.getResultFilter();
if (docs != null && docs.size() > 0) {
builder.field(TEXT_DOCS_FIELD, docs.toArray(new String[0]));
}
if (resultFilter != null) {
builder.field(RETURN_BYTES_FIELD, resultFilter.isReturnBytes());
builder.field(RETURN_NUMBER_FIELD, resultFilter.isReturnNumber());
List targetResponse = resultFilter.getTargetResponse();
if (targetResponse != null && targetResponse.size() > 0) {
builder.field(TARGET_RESPONSE_FIELD, targetResponse.toArray(new String[0]));
}
List targetPositions = resultFilter.getTargetResponsePositions();
if (targetPositions != null && targetPositions.size() > 0) {
builder.field(TARGET_RESPONSE_POSITIONS_FIELD, targetPositions.toArray(new Integer[0]));
}
}
break;
case TEXT_SIMILARITY:
TextSimilarityInputDataSet inputDataSet = (TextSimilarityInputDataSet) this.inputDataset;
List documents = inputDataSet.getTextDocs();
String queryText = inputDataSet.getQueryText();
builder.field(QUERY_TEXT_FIELD, queryText);
if (documents != null && !documents.isEmpty()) {
builder.startArray(TEXT_DOCS_FIELD);
for (String d : documents) {
builder.value(d);
}
builder.endArray();
}
break;
case QUESTION_ANSWERING:
QuestionAnsweringInputDataSet qaInputDataSet = (QuestionAnsweringInputDataSet) this.inputDataset;
String question = qaInputDataSet.getQuestion();
String context = qaInputDataSet.getContext();
builder.field(QUESTION_FIELD, question);
builder.field(CONTEXT_FIELD, context);
break;
case REMOTE:
RemoteInferenceInputDataSet remoteInferenceInputDataSet = (RemoteInferenceInputDataSet) this.inputDataset;
Map parameters = remoteInferenceInputDataSet.getParameters();
builder.field(PARAMETERS_FIELD, parameters);
builder.field(ACTION_TYPE_FIELD, remoteInferenceInputDataSet.getActionType());
break;
default:
break;
}
}
builder.endObject();
return builder;
}
public static MLInput parse(XContentParser parser, String inputAlgoName, ActionType actionType) throws IOException {
MLInput mlInput = parse(parser, inputAlgoName);
if (mlInput.getInputDataset() instanceof RemoteInferenceInputDataSet) {
RemoteInferenceInputDataSet remoteInferenceInputDataSet = (RemoteInferenceInputDataSet) mlInput.getInputDataset();
if (remoteInferenceInputDataSet.getActionType() == null) {
remoteInferenceInputDataSet.setActionType(actionType);
}
}
return mlInput;
}
public static MLInput parse(XContentParser parser, String inputAlgoName) throws IOException {
String algorithmName = inputAlgoName.toUpperCase(Locale.ROOT);
FunctionName algorithm = FunctionName.from(algorithmName);
if (MLCommonsClassLoader.canInitMLInput(algorithm)) {
MLInput mlInput = MLCommonsClassLoader
.initMLInput(algorithm, new Object[] { parser, algorithm }, XContentParser.class, FunctionName.class);
mlInput.setAlgorithm(algorithm);
return mlInput;
}
MLAlgoParams mlParameters = null;
SearchSourceBuilder searchSourceBuilder = null;
List sourceIndices = new ArrayList<>();
DataFrame dataFrame = null;
boolean returnBytes = false;
boolean returnNumber = true;
List targetResponse = new ArrayList<>();
List targetResponsePositions = new ArrayList<>();
List textDocs = new ArrayList<>();
String queryText = null;
String question = null;
String context = null;
ensureExpectedToken(XContentParser.Token.START_OBJECT, parser.currentToken(), parser);
while (parser.nextToken() != XContentParser.Token.END_OBJECT) {
String fieldName = parser.currentName();
parser.nextToken();
switch (fieldName) {
case ML_PARAMETERS_FIELD:
mlParameters = parser.namedObject(MLAlgoParams.class, algorithmName, null);
break;
case INPUT_INDEX_FIELD:
ensureExpectedToken(XContentParser.Token.START_ARRAY, parser.currentToken(), parser);
while (parser.nextToken() != XContentParser.Token.END_ARRAY) {
sourceIndices.add(parser.text());
}
break;
case INPUT_QUERY_FIELD:
ensureExpectedToken(XContentParser.Token.START_OBJECT, parser.currentToken(), parser);
searchSourceBuilder = SearchSourceBuilder.fromXContent(parser, false);
break;
case INPUT_DATA_FIELD:
dataFrame = DefaultDataFrame.parse(parser);
break;
case RETURN_BYTES_FIELD:
returnBytes = parser.booleanValue();
break;
case RETURN_NUMBER_FIELD:
returnNumber = parser.booleanValue();
break;
case TARGET_RESPONSE_FIELD:
ensureExpectedToken(XContentParser.Token.START_ARRAY, parser.currentToken(), parser);
while (parser.nextToken() != XContentParser.Token.END_ARRAY) {
targetResponse.add(parser.text());
}
break;
case TARGET_RESPONSE_POSITIONS_FIELD:
ensureExpectedToken(XContentParser.Token.START_ARRAY, parser.currentToken(), parser);
while (parser.nextToken() != XContentParser.Token.END_ARRAY) {
targetResponsePositions.add(parser.intValue());
}
break;
case TEXT_DOCS_FIELD:
ensureExpectedToken(XContentParser.Token.START_ARRAY, parser.currentToken(), parser);
while (parser.nextToken() != XContentParser.Token.END_ARRAY) {
textDocs.add(parser.text());
}
break;
case QUERY_TEXT_FIELD:
queryText = parser.text();
break;
case QUESTION_FIELD:
question = parser.text();
break;
case CONTEXT_FIELD:
context = parser.text();
break;
default:
parser.skipChildren();
break;
}
}
MLInputDataset inputDataSet = null;
if (algorithm == FunctionName.TEXT_EMBEDDING
|| algorithm == FunctionName.SPARSE_ENCODING
|| algorithm == FunctionName.SPARSE_TOKENIZE) {
ModelResultFilter filter = new ModelResultFilter(returnBytes, returnNumber, targetResponse, targetResponsePositions);
inputDataSet = new TextDocsInputDataSet(textDocs, filter);
} else if (algorithm == FunctionName.TEXT_SIMILARITY) {
inputDataSet = new TextSimilarityInputDataSet(queryText, textDocs);
} else if (algorithm == FunctionName.QUESTION_ANSWERING) {
inputDataSet = new QuestionAnsweringInputDataSet(question, context);
}
return new MLInput(algorithm, mlParameters, searchSourceBuilder, sourceIndices, dataFrame, inputDataSet);
}
private MLInputDataset createInputDataSet(SearchSourceBuilder searchSourceBuilder, List sourceIndices, DataFrame dataFrame) {
if (dataFrame != null) {
return new DataFrameInputDataset(dataFrame);
}
if (sourceIndices != null && searchSourceBuilder != null) {
return new SearchQueryInputDataset(sourceIndices, searchSourceBuilder);
}
return null;
}
@Override
public FunctionName getFunctionName() {
return this.algorithm;
}
}