org.opensearch.ml.common.dataframe.DefaultDataFrame Maven / Gradle / Ivy
The newest version!
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/
package org.opensearch.ml.common.dataframe;
import static org.opensearch.core.xcontent.XContentParserUtils.ensureExpectedToken;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.stream.Collectors;
import org.opensearch.core.common.io.stream.StreamInput;
import org.opensearch.core.common.io.stream.StreamOutput;
import org.opensearch.core.xcontent.ToXContent;
import org.opensearch.core.xcontent.XContentBuilder;
import org.opensearch.core.xcontent.XContentParser;
import lombok.AccessLevel;
import lombok.ToString;
import lombok.experimental.FieldDefaults;
@FieldDefaults(makeFinal = true, level = AccessLevel.PRIVATE)
@ToString
public class DefaultDataFrame extends AbstractDataFrame {
private static final String COLUMN_META_FIELD = "column_metas";
private static final String ROWS_FIELD = "rows";
List rows;
ColumnMeta[] columnMetas;
public DefaultDataFrame(final ColumnMeta[] columnMetas) {
super(DataFrameType.DEFAULT);
this.columnMetas = columnMetas;
this.rows = new ArrayList<>();
}
public DefaultDataFrame(final ColumnMeta[] columnMetas, final List rows) {
super(DataFrameType.DEFAULT);
this.columnMetas = columnMetas;
this.rows = rows;
}
public DefaultDataFrame(StreamInput streamInput) throws IOException {
super(DataFrameType.DEFAULT);
this.columnMetas = streamInput.readArray(ColumnMeta::new, ColumnMeta[]::new);
this.rows = streamInput.readList(Row::new);
}
@Override
public void appendRow(final Object[] values) {
if (values == null) {
throw new IllegalArgumentException("input values can't be null");
}
Row row = new Row(values.length);
for (int i = 0; i < values.length; i++) {
row.setValue(i, ColumnValueBuilder.build(values[i]));
}
appendRow(row);
}
@Override
public void appendRow(final Row row) {
if (row == null) {
throw new IllegalArgumentException("input row can't be null");
}
if (row.size() != columnMetas.length) {
final String message = String
.format("the size is different between input row:%d " + "and column size in dataframe:%d", row.size(), columnMetas.length);
throw new IllegalArgumentException(message);
}
for (int i = 0; i < columnMetas.length; i++) {
if (columnMetas[i].getColumnType() != row.getValue(i).columnType()) {
final String message = String
.format(
"the column type is different in column meta:%s and input row:%s for index: %d",
columnMetas[i].getColumnType(),
row.getValue(i).columnType(),
i
);
throw new IllegalArgumentException(message);
}
}
this.rows.add(row);
}
public Row getRow(int index) {
return rows.get(index);
}
@Override
public int size() {
return this.rows.size();
}
@Override
public ColumnMeta[] columnMetas() {
return Arrays.copyOf(columnMetas, columnMetas.length);
}
@Override
public DataFrame remove(int columnIndex) {
if (columnIndex < 0 || columnIndex >= columnMetas.length) {
throw new IllegalArgumentException("columnIndex can't be negative or bigger than columns length:" + columnMetas.length);
}
ColumnMeta[] newColumnMetas = new ColumnMeta[columnMetas.length - 1];
int index = 0;
for (int i = 0; i < columnMetas.length && i != columnIndex; i++) {
newColumnMetas[index++] = columnMetas[i];
}
return new DefaultDataFrame(newColumnMetas, rows.stream().map(row -> row.remove(columnIndex)).collect(Collectors.toList()));
}
@Override
public DataFrame select(int[] columns) {
if (columns == null || columns.length == 0) {
throw new IllegalArgumentException("columns can't be null or empty");
}
ColumnMeta[] newColumnMetas = new ColumnMeta[columns.length];
int index = 0;
for (int col : columns) {
if (col < 0 || col >= columnMetas.length) {
throw new IllegalArgumentException("columnIndex can't be negative or bigger than columns length");
}
newColumnMetas[index++] = columnMetas[col];
}
return new DefaultDataFrame(newColumnMetas, rows.stream().map(row -> row.select(columns)).collect(Collectors.toList()));
}
@Override
public int getColumnIndex(String target) {
List columnNames = Arrays.stream(this.columnMetas()).map(ColumnMeta::getName).collect(Collectors.toList());
int targetIndex = -1;
for (int i = 0; i < columnNames.size(); ++i) {
if (columnNames.get(i).equals(target)) {
targetIndex = i;
break;
}
}
if (targetIndex == -1) {
throw new IllegalArgumentException("No matched target when generating dataset from data frame.");
}
return targetIndex;
}
@Override
public Iterator iterator() {
return rows.iterator();
}
@Override
public void writeTo(StreamOutput out) throws IOException {
super.writeTo(out);
out.writeArray(columnMetas);
out.writeList(rows);
}
public static DefaultDataFrame parse(XContentParser parser) throws IOException {
List columnMetas = new ArrayList<>();
List rows = new ArrayList<>();
ensureExpectedToken(XContentParser.Token.START_OBJECT, parser.currentToken(), parser);
while (parser.nextToken() != XContentParser.Token.END_OBJECT) {
String fieldName = parser.currentName();
parser.nextToken();
switch (fieldName) {
case COLUMN_META_FIELD:
ensureExpectedToken(XContentParser.Token.START_ARRAY, parser.currentToken(), parser);
while (parser.nextToken() != XContentParser.Token.END_ARRAY) {
columnMetas.add(ColumnMeta.parse(parser));
}
break;
case ROWS_FIELD:
ensureExpectedToken(XContentParser.Token.START_ARRAY, parser.currentToken(), parser);
while (parser.nextToken() != XContentParser.Token.END_ARRAY) {
rows.add(Row.parse(parser));
}
break;
default:
parser.skipChildren();
break;
}
}
return new DefaultDataFrame(columnMetas.toArray(new ColumnMeta[0]), rows);
}
public XContentBuilder toXContent(XContentBuilder builder) throws IOException {
return toXContent(builder, EMPTY_PARAMS);
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, ToXContent.Params params) throws IOException {
builder.startArray(COLUMN_META_FIELD);
for (ColumnMeta columnMeta : columnMetas) {
columnMeta.toXContent(builder, params);
}
builder.endArray();
builder.startArray(ROWS_FIELD);
for (Row row : rows) {
row.toXContent(builder, params);
}
builder.endArray();
return builder;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy